

Option nv, Gaston Geenslaan 14, 3001 Leuven - Belgium - Tel +32 16 317 411 - Fax +32 16 207 164

Technical Specification

Application design for correctly handling Plug and
Play in Windows Systems

Option Confidential

Technical Specification : Application design for correctly handling
Plug and Play in Windows systems

Author: M. Sykes Version: V002ext

Creation Date: Oct 22, 2007 Page: 1 of 6

 Option
Confidential:

This document is Option Confidential - it may not be duplicated, neither distributed externally
without prior and written permission of Option nv.

About this document

Overview and Purpose

This document is aimed at application writers wishing to open devices that
are subject to the Windows Plug and Play system.

Confidentiality

All data and information contained or disclosed by this document is confidential and
proprietary of Option nv, and all rights therein are expressly reserved. By accepting
this document, the recipient agrees that this information is held in confidence and in
trust and will not be used, copied, reproduced in whole or in part, nor its contents
revealed in any manner to others without prior and written permission of Option nv.

Version History

Date Version Author(s) Revision(s) Remarks
Oct 22, 2007 V001ext M. Sykes Initial version

Dec 12, 2007 V002ext M. Sykes Elaborations on
DBT_DEVICEREMOVECOMP

LETE.

Technical Specification : Application design for correctly handling
Plug and Play in Windows systems

Author: M. Sykes Version: V002ext

Creation Date: Oct 22, 2007 Page: 2 of 6

 Option
Confidential:

This document is Option Confidential - it may not be duplicated, neither distributed externally
without prior and written permission of Option nv.

Table of contents

1 INTRODUCTION 3
2 REFERENCES 4
3 Messages generated by the system 4
4 Registering for those messages 4
5 Device arrival message 5
6 Device query removal message 6
7 Device removal 6
8 Sumary 6

Technical Specification : Application design for correctly handling
Plug and Play in Windows systems

Author: M. Sykes Version: V002ext

Creation Date: Oct 22, 2007 Page: 3 of 6

 Option
Confidential:

This document is Option Confidential - it may not be duplicated, neither distributed externally
without prior and written permission of Option nv.

1 INTRODUCTION

Removing devices from a running system is tough on the system. It has a big impact
on the device drivers, but also on applications that are accessing that device when it
is removed.

This document is an aid to application writers to handle these events correctly.

Technical Specification : Application design for correctly handling
Plug and Play in Windows systems

Author: M. Sykes Version: V002ext

Creation Date: Oct 22, 2007 Page: 4 of 6

 Option
Confidential:

This document is Option Confidential - it may not be duplicated, neither distributed externally
without prior and written permission of Option nv.

2 REFERENCES

Ref Document

3 MESSAGES GENERATED BY THE SYSTEM

The system generates WM_DEVICE change messages to notify applications that a
device state has changed.

4 REGISTERING FOR THOSE MESSAGES

To get these messages an application has to register for them using
RegisterDeviceNotification().

The application then needs to map the message into a handler. This is language
dependent.

Using RegisterDeviceNotification() is a two stage process. First the application
registers for events by Interface, then by handle.

So, to register for events on our Network device, we specify the Network device
GUID.

DEFINE_GUID(GUID_NDIS_LAN_CLASS, 0xad498944, 0x762f, 0x11d0, 0x8d,
0xcb, 0x00, 0xc0, 0x4f, 0xc3, 0x35, 0x8c);

ZeroMemory(&devNotification, sizeof(devNotification));
devNotification.dbcc_size = sizeof(DEV_BROADCAST_DEVICEINTERFACE);
devNotification.dbcc_devicetype = DBT_DEVTYP_DEVICEINTERFACE;
devNotification.dbcc_classguid = GUID_NDIS_LAN_CLASS;

hInterfaceNotification = RegisterDeviceNotification(this->GetSafeHwnd(),

&devNotification,
DEVICE_NOTIFY_WINDOW_H
ANDLE);

Technical Specification : Application design for correctly handling
Plug and Play in Windows systems

Author: M. Sykes Version: V002ext

Creation Date: Oct 22, 2007 Page: 5 of 6

 Option
Confidential:

This document is Option Confidential - it may not be duplicated, neither distributed externally
without prior and written permission of Option nv.

5 DEVICE ARRIVAL MESSAGE

The application then gets a WM_DEVICECHANGE message with a message type of
DBT_DEVICEARRIVAL when the device is inserted.

With the message is a PDEV_BROADCAST_DEVICEINTERFACE structure.

The application should then check the name of the device (dbcc_name) to make
sure it is one we are interested in.

GetDeviceDescription(p->dbcc_name, DeviceName)); DeviceName is a CString.

Accompanying this document is a zip file containing source code for this function.

If this is our device we need to register for device events a second time, but this time
by handle:

m_hDevice = CreateFile(p->dbcc_name,

MAXIMUM_ALLOWED ,
0,
NULL,
OPEN_EXISTING,
0,
NULL);

if(m_hDevice == INVALID_HANDLE_VALUE)
{

doerror();
 break;
}

ZeroMemory(&filter, sizeof(filter));
filter.dbch_size = sizeof(filter);
filter.dbch_devicetype = DBT_DEVTYP_HANDLE;
filter.dbch_handle = m_hDevice;

hHandleNotification = RegisterDeviceNotification(GetSafeHwnd(),

&filter,
DEVICE_NOTIFY_WINDOW_HANDLE);

Doing this second registration allows the application to receive
DBT_DEVICEQUERYREMOVE messages.

Not too that the handle returned by the CreateFile function can be used for general
IO calls, such as WriteFile() and DeviceOPControl();

the application can also open any symbolic link name on the device, such as
"GTNDIS0" and perform IO on it.

Technical Specification : Application design for correctly handling
Plug and Play in Windows systems

Author: M. Sykes Version: V002ext

Creation Date: Oct 22, 2007 Page: 6 of 6

 Option
Confidential:

This document is Option Confidential - it may not be duplicated, neither distributed externally
without prior and written permission of Option nv.

6 DEVICE QUERY REMOVAL MESSAGE

The application receives a DBT_DEVICEQUERYREMOVE when the user does a
safe remove.

If the application wants to allow this it must deregister for device events by handle by
calling

UnregisterDeviceNotification(hHandleNotification);

It must also call CloseHandle(m_hDevice); on the handle it got calling CreateFile() in
the DBT_DEVICEARIVAL handler.

It must also close any handles it opened on the symbolic link.

7 DEVICE REMOVAL

The application gets a DBT_DEVICEREMOVECOMPLETE when the card is finally
removed, and when the card is surprise removed.

The application must deregister for notification by handle and close any handles on
the device the same way it does for DBT_QUERYREMOVE.

*NOTE: Depending on the class of device you have registered for events on you
might get either a DBT_DEVICEREMOVECOMPLETE by INTERFACE, or by
HANDLE.

With the Network device class GUID, you will get it by INTERFACE, with other
classes (our own bespoke bus class GUID) we get it by HANDLE.

So it is best to handle both types of message in the
DBT_DEVICEREMOVECOMPLETE handler and close all open handles on the
device.

8 SUMARY

That is all there is to it, and if an application follows this it will always know when the
device is there or not, and when it can and cant access the device.

Source code is available that demonstrates this, it is in GtmNicApp.zip.

