
Active Page Item Developer - Reference Manual
(c) 2006-2009 Rorohiko Ltd.
By Kris Coppieters

1. Introduction
Active Page Item Developer is a toolset for Adobe® InDesign® CS, CS2, CS3 and
CS4 which assist the development of JavaScript-based solutions within
InDesign.

If you’re only interested in compiling stand-alone scripts, you can skip most of
this reference manual – but you want to look at the chapter
‘6. Licensing your code’

The first major feature is that it extends the InDesign JavaScript programming
model with event-driven programming.

A second major feature is that it helps you in protecting your scripts from
inspection and pirating. If you so desire, you can ‘lock’ the results of your hard
work and only allow them to be run for a predetermined demo trial period, or
only when properly licensed.

This manual was last updated when 1.0.47 was the current version of the APID
ToolAssistant plug-in.

2. System Requirements
Active Page Item Developer is available for Mac OS X and Windows, and for
InDesign CS, CS2, CS3 and CS4. It has been tested against InDesign CS 3.0.1 or
higher, against InDesign CS2 4.0.5 or higher, against InDesign CS3 5.0.4 or
higher, and against InDesign CS4 6.0.3 or higher.

3. Properties and methods added to the ExtendScript
DOM by Active Page Items
Remark: In this text, the words ‘script tag’, ‘script label’ and ‘label’ are used
interchangeably - they refer to the same thing.

Active Page Item Developer extends the lists of properties and methods for the
PageItem, Application, and Document object classes in the InDesign DOM.

The information below (properties and methods) should be seen as an extension
to the information provided in the InDesign JavaScript/VBScript/AppleScript
documentation available from Adobe Systems.

Active Page Items is primarily meant for use with ExtendScript, but many of the
methods and properties listed below are also usable and accessible from
VBScript and AppleScript.

3.1. Additional PageItem, Group, Guide and Story Properties
Property Type Access Description

componentId String write-once This is a special string that allows you to ‘lock’

the script info attached to a page item or inside
an .spln file against inspection.

Most Active Page Item properties become
inaccessible and encrypted, unless accessed
from a handler attached to another page item
that shares a compatible componentId string.
See the sections on ‘Predefined keys’ and
‘Component Ids and Licensing’ for more
information.

REMARK: You cannot debug the code of a
compiled script if the componentId of a page
item or scripted plug-in is not the empty string.
In InDesign CS and CS2, enabling the debugger
will disable any scripted plug-ins (this to avoid
code inspection through the debugger).

contextMenu Array of Array
(pairs of
strings)

r/w Defines a context menu for this page item; it
consists of an array of arrays. This array
contains zero or more 4-element arrays.

The individual 4-element arrays should each
contain 2 strings, a floating point positioning
value, and a Boolean.

It is allowed to omit the third and fourth
elements (effectively reducing the element to a
2- or 3-element array), in which case the omitted
floating point value defaults to 10.0 and the
omitted Boolean defaults to false.

The first string is the menu item text that
should be displayed in the context menu.

The second string is an event code.

The third value is a floating point value that
helps positioning the menu items. Higher values
end up further down the menu, lower values end
up more up the menu.

The fourth, Boolean item defines whether this
context menu should be applied to a text
selection or to the frame.

Setting the Boolean to true makes the context
menu item appear when the frame is context-
clicked while it is in text selection mode.

When the user brings up the context menu and
selects it, the attached JavaScript will be called
with theItem.eventCode set to the event code
associated with the menu item in the
corresponding pair.

Context menu entries with event codes that
start with a subject… prefix are automatically
associated with all observed subjects for this
page item. Any other event codes are associated
with this page item itself.

dataStore variable r/w This is a ‘free’ data storage zone that allows you
to attach some data ‘in’ the page element. Most

times when a top-level JavaScript is called for
event processing, it starts out with a new
execution context - any regular JavaScript
global variables that are defined disappear once
the event is processed.

By using this attribute you can store some data
away so that it remains persistent between
consecutive non-nested event processing calls.

This data is saved with the document, so it
remains available even when the document is
closed and re-opened.

Because of issues with the CORBA glue code,
this property is not supported on the InDesign
Server version of APID – use
setDataStore/getDataStore instead.

demoDaysLeft Integer read-only If the currently executing JavaScript needs
licensing and is being used in demo mode, this
property contains the number of demo days left
before execution becomes disabled.

displayErrorDialogs Boolean r/w Whether to bring up error dialogs (e.g. for
syntax errors) during the execution of the script
attached to this page item.

eventCode String read-only The event currently being handled

eventData String read-only Some optional additional data that might be
passed along with the event.

For predefined events (like docLoaded,
subjectSelected,…) the eventData is an object,
currently with only a single attribute:

- nestedInScript tells you whether this event
handler is being called while another script is
currently active. This allows checking for issues
like docLoaded handlers being launched by a
script that executes a call to app.open().

eventFilter String r/w String specifying which events are captured by
this page item. See “Event Filter Expressions”.
Shown on the Active Page Item Developer palette
as Event Filter.

eventSource PageItem or
ScriptedPlugin

read-only When the JavaScript is executed, this property
contains a reference to the object that caused
the event. Typically you’d refer to
theItem.eventSource to access the object
causing the event

isDemo Boolean read-only Returns true when the currently executing
JavaScript needs licensing and is being used in
demo mode.

javaScript String r/w JavaScript attached to the page item. This
JavaScript can use the predefined variable
theItem to refer to the page item whose script
is being executed.

nestedInScript Boolean Read-only Returns true when the currently executing

JavaScript handler is called (directly or
indirectly) from a regular user script (e.g. stored
in the Presets/Scripts directory).

observers Array of
PageItem

read-only All page items that are currently observing this
page item by means of their
subjectScriptTagFilter. This property
looks at the current page item as being a subject
to one or more other page items.

subjects Array of
PageItem

read-only This contains an array with all page items that
are part of the selection determined by the
current subjectScriptTagFilter. This
property looks at the current page item as being
the observer of one or more other page items.

subjectScriptTagFilter String r/w String specifying the labels of the page items
that are to be observed by this page item. On
the Active Page Item Developer palette this is
shown as List of Subjects.

tempDataStore variable r/w This is a ‘free’ data storage zone that allows you
to store some data ‘in’ the page element. Often
when a top level JavaScript is called for event
processing, it starts out with a new execution
context – any regular JavaScript global
variables that were defined by your script might
disappear once the event is processed.

(On the other hand, global variables defined
during the processing of nested events tend to
persist in the nested event handlers).

By using this attribute you can store some data
away so that it is persistent between different
(non-nested) event processing calls.

This data is not saved when the document is
closed.

Because of issues with the CORBA glue code,
this property is not supported on the InDesign
Server version – use setDataStore/getDataStore
instead.

triggeredFromScript Boolean read-only Is true if the current event was caused by some
scripted operation.

However, this does not apply to the modified-
recomposed… and subjectModified-recomposed…
events: these are asynchronous, and by the time
they are captured by APID, there is no good way
for APID to be able to tell what caused them
(scripted operation vs. user interaction).

useDebugger Boolean r/w Currently InDesign CS2/CS3 only. When this is
set to true then the script will set up a debugger
session each time it catches an event.

3.2. Additional PageItem, Group, Guide and Story Methods
Method Returns Description

callExtension variable Generic extension mechanism that can be used by InDesign
SDK/C++ developers. Calls through to a C++ implementation
aggregated onto the page item’s boss class. This is an easy way to
extend JavaScript with C++ code.

Parameter Type

interfaceID An integer – the interface ID of
the interface we’re calling from
JavaScript. This interface
needs to be aggregated onto the
page item’s boss class.

[parameter1] An optional parameter

[parameter2] An optional parameter

[parameter3] An optional parameter

[parameter4] An optional parameter

[parameter5] An optional parameter

[parameter6] An optional parameter

[parameter7] An optional parameter

[parameter8] An optional parameter

[parameter9] An optional parameter

[parameter10] An optional parameter

[parameter11] An optional parameter

The underlying implementation can return a return value. See the
cookbook for a practical example.

createProgressBar - Deprecated. Use Application.createProgressBar() instead

getDataStore variable Enhanced form of the dataStore and tempDataStore properties –
also see setDataStore. This method retrieves data from one of two
associative arrays.

Parameter Type

key String

[useTempDataStore] Boolean

Using an empty key ("") accesses the same data item as the
dataStore or tempDataStore properties.

If the optional useTempDataStore parameter is omitted, it defaults
to false.

If useTempDataStore is true, this method accesses a set of data
items that are not saved with the document.

If useTempDataStore is false, this method accesses another set of
data items that are saved along with the document.

Keys that start and end with a dollar sign are reserved for internal
use (see further).

handleScriptEvent Boolean Sends an event code and some optional event data to this page
element for processing.

Parameter Type

eventCode String

[eventData] String

There are restrictions here: it is not allowed to call an event handler
that has been compiled/protected by a component id, unless the
caller is also compiled/protected itself by a compatible component id.

Compatible component id must have the same compilation password
(other data fields inside the component id can be different).

This mechanism protects compiled code against unwanted use by
‘outside’ scripts: unless the calling script itself has been protected as
well with a compatible component id, no other script can call directly
into an event handler attached to a page item.

See the sections on ‘Predefine keys’ and ‘Component Ids and
Licensing’ for more information.

labeledPageItems Array Contains all page elements selected through their label by a certain
wildcard expression

Parameter Type

wildcardExpression String

[where] Integer

The optional where parameter is a combination of zero or more
bitflag-values – you can add together some of the values below to
combine them:

0 same document (default)

1 same spread as this page item

2 same page as this page item

4 same layer as this page item

8 same parent as this page item

16 children of this page item

registerMenuItem - Deprecated – use Application.registerMenuItem() instead

saveToPlugin - Saves this page item’s Active Page Item attributes into a stand-alone
.spln file, which can be stored in the Plug-Ins folder.

When a document is opened, this .spln file is automatically loaded
and converted into a ‘pseudo-page-item’ which reacts to events the
same way as the original page item: it observes page items, and
reacts to events.

Parameter Type

pluginName String. Scripted plug-in files
whose name starts with ‘@’ get
special treatment.

[compress] Boolean

The optional compress parameter determines whether the scripted
plugin should be reduced in size by removing any redundant text
(comments, extra spaces and tabs,…) from the JavaScript source
code prior to saving.

Later on, when this plug-in is loaded by a document, it will carry a

label that is based on the filename used: the .spln extension is
stripped off and the filename is converted to all lowercase. The
resulting string becomes the label used for the instantiated
ScriptedPlugin object, which is owned by the Document object that is
being opened.

If the saved file has a name that starts with ‘@’ it is treated slightly
differently.

Normally, when a user removes or updates an .spln file, any existing
associated data that was stored in the dataStore of the
corresponding ScriptedPlugin object is discarded.

However, if the saved plugin file’s name starts with a ‘@’, then the
dataStore will survive updating and removal of the .spln file.

setDataStore - Enhanced form of the dataStore and tempDataStore properties -
also see getDataStore. This method stores data in one of two
associative arrays.

Parameter Type

key String

data Variable

[useTempDataStore] Boolean

Using an empty key (“”) accesses the same data item as the
dataStore or tempDataStore properties.

If the optional useTempDataStore parameter is ommitted, it
defaults to false.

If useTempDataStore is true, this method accesses a set of data
items that are not saved with the document.

If useTempDataStore is false, this method accesses another set of
data items that are saved along with the document.

Keys that start and end with a dollar sign are reserved for internal
use (see ‘Predefined Keys’ a bit further).

setProgress Boolean Deprecated. Use Application.setProgress() instead

3.3. Additional Document methods
Method Returns Description

labeledPageItems

Array Contains all page elements selected through their label by a certain
wildcard expression

Parameter Type

wildcardExpression String

loadedScriptedPlugins Array Finds all scripted plug-ins instantiated into this document. The
single parameter is a wildcard expression – use a single star to get
all available scripted plug-ins.

Scripted plug-in labels are determined by the filename of the
scripted plug-in: the .spln extension is stripped off, and the name is
converted to all lower case.

Parameter Type

labelWildcardExpression A string with a wildcard
expression for matching
against the scripted plug-in
labels.

multiPropertyAssign Integer Parameter Type

assignmentList Array of 3-element subarrays.

Each subarray has three entries: an object reference (Object), an
attribute name (String) and a value to be assigned (anything).

All assignments will be carried out in a single undoable operation,
which might lead to speed improvements in some situations.

The return value is zero if all assignments were successful, and
non-zero if one or more assignments failed.

3.4. Additional Application methods
Method Returns Description

callExtension variable Generic extension mechanism that can be used by InDesign
SDK/C++ developers. Calls through to a C++ implementation
aggregated onto the kAppBoss boss class. This is an easy way to
extend JavaScript with C++ code.

Parameter Type

interfaceID An integer – the interface ID
of the interface we’re calling
from JavaScript. This
interface needs to be
aggregated onto the
kAppBoss boss class.

[parameter1] An optional parameter

[parameter2] An optional parameter

[parameter3] An optional parameter

[parameter4] An optional parameter

[parameter5] An optional parameter

[parameter6] An optional parameter

[parameter7] An optional parameter

[parameter8] An optional parameter

[parameter9] An optional parameter

[parameter10] An optional parameter

[parameter11] An optional parameter

The underlying implementation can return a return value. See
the cookbook for a practical example.

callExtension(0x90b6c,… variable Active Page Items also contains a built-in ‘extension’, based on
the previous extension scheme. It allows various enhancements
built in to Active Page Items to be used from ExtendScript.

To call this built-in extension, the interfaceID parameter must be
equal to 0x90b6C (also known as

IID_IACTIVEPAGEITEMSCRIPTUTILITIESEXTENSION).

When using this built-in extension, parameter1 is an integer
‘opcode’ which determines the desired functionality of the call;
the other parameters are or are not used depending on the
opcode.

The following opcodes have been defined in Active Page Items
1.0.47:

Opcode name Opcode value

kOpCode_SetApplicationModalLock 10001

kOpCode_ClearApplicationModalLock 10002

kOpcode_IsApplicationModalLocked 10003

-reserved- 10004

-reserved- 10005

kOpCode_DiscardUndo 10006

kOpCode_RunScriptInEngine 10007

kOpcode_GetDocGUID 10008

kOpcode_FindDocGUID 10009

kOpCode_UIColorRGB 10010

kOpcode_SerialNumber 10011

kOpcode_FrontDocGUID 10012

kOpcode_ActiveDocGUID 10013

kOpcode_OwningDocGUID 10014

kOpcode_SPLNFile 10015

kOpcode_MoveInto 10016

kOpcode_Get_theItem 10017

kOpcode_OwningDoc 10018

kOpcode_OwningPage 10019

kOpcode_OwningSpread 10020

kOpcode_IsValidID 10021

kOpCode_SystemID 10022

• The first two opcodes allow you to lock and unlock InDesign’s
user interface into a modal mode.

This can be handy while executing an external application – by
locking InDesign you can be sure the user won’t be able to do
anything until you unlock it again. Also check the
app.launchWith method in this regard.

• The ‘discard undo’ opcode allows you to clear the undo stack for
an InDesign document. You should pass a reference to the
document as parameter1.

‘Regularly’ calling this function in an intensive ExtendScript can
give you a significant speed boost – e.g. calling this after about

every 50 document changes seems to be a good amount.

• The ‘run script in engine’ opcode only works in InDesign CS3,
and is a replacement for the app.doScript which also allows
you to specifiy an engine for the script to be executed. This can
also be achieved via app.doScript, but this form is a bit easier
to use.

The syntax is

 success =
 app.callExtension(
 0x90B6C,10007,
 script,
 engineName,
 displayDialogs,
 useDebugger);

The last three parameters are optional. engineName is a string
with the engine name to use; displayDialogs and
useDebugger are booleans.

• The ‘serial number’ opcode gives you a way to access the serial
number of InDesign – this can come in handy when
implementing various protection schemes, or when sorting out
installation issues.

 serialNumber = app.callExtension(0x90B6C,10011);

From CS4 onwards, the serial number is hashed – it has no
longer an obvious relation to the InDesign activation code, as was
the case in CS3 and earlier.

• GUIDs

The ‘get doc GUID’ function is used as follows:

 guid =
 app.callExtension(0x90B6C,10008,document);

This function returns a GUID (Globally Unique Identifier) for a
document. This is a string of the form “{nnnnnnnn-nnnn-nnnn-
nnnnnnnnnnnnnnnn}” where all 'n' stand for a hexadecimal digit.

These GUID allow you to work with same-name documents that
are concurrently open without getting tangled in the confusion
that occurs when using resolve calls.

As long as a document is not moved from its original location on
disk, it will keep the same GUID. Two documents with the same
name but different paths will have different GUID.

Opening, closing, (re)saving to the same location will NOT
change the GUID.

Moving a document to another location will change the GUID.

The ‘find open doc by GUID’ function is used as follows:

 doc = app.callExtension(0x90B6C,10009,guid);

This function retrieves a reference to an already open document
based on its GUID string.

These GUID strings are unique and persistent and allow
persistent references to same-name documents without resolve-
like issues (but the documents are meant to be 'unmovable' – i.e.

they cannot be renamed or moved to another folder).

Once the document is open, it can be retrieved via its GUID.

The ‘front doc GUID’ gives you the GUID of the front document –
even if it is not the active document.

 frontDocGuid =
 app.callExtension(0x90B6C,10012);

Similarly, the ‘active doc GUID’ gives you the GUID of the
currently active document – even if it is not the front-most
document.

 activeDocGuid =
 app.callExtension(0x90B6C,10013);

The ‘owning doc GUID’ gives you the GUID for the document
that owns a particular page item – you hand the function a page
item, and it’ll tell you what the document’s GUID is.

 owningDocGuid =
 app.callExtension(0x90B6C,10014,pageItem);

• The ‘SPLN file’ opcode gives you access to the file path of the
currently executing SPLN file (e.g. so you can find associated
resources that are stored in the same folder):

 splnFile =
 app.callExtension(0x90B6C,10015);

• The ‘Move Into’ opcode allows you to easily move a page item
into another one without needing to use cut and paste. Especially
handy with server versions of Active Page Items.

 app.callExtension(
 0x90B6C,10016,
 newParent,movingChild);

• The ‘UI Color’ opcode gives you access to the RGB values
behind a particular UIColor:

 uiColor = UIColor.cuteTeal;
 rgbValues =
 app.callExtension(0x90B6C,10010,uiColor);

• The kOpcode_Get_theItem gives you access to the value of
theItem as predefined at the beginning of each event handler
call - even if theItem is overwritten, using this opcode allows
you to retrieve its original value.

theItemAgain = app.callExtension(0x90B6C,10017);

• The kOpcode_Owning… opcodes navigate the page item
hierarchy. The spread and page versions are very simple-minded
- they cannot handle any kind of nesting; we intend to improve
these in 1.0.48.

theDoc =
app.callExtension(0x90B6C,10018,thePageItem);

• The kOpcode_IsValidID allows you to check whether a page
item id refers to a valid page item without need to force an
exception to throw.

usableId =
app.callExtension(0x90B6C,10021,theDoc,theId);

•The kOpCode_SystemID returns the system ID used by the

licensing system – this can be handy for generating license files.

theSysID = app.callExtension(0x90B6C,10022);

createProgressBar - Brings up a progress bar window. This window stays on the
screen until the current ExtendScript event handler terminates
or until the setProgress is called with a value beyond the value of
the end parameter.

When using this method from a regular (non-event handler)
script, the only way to make the bar disappear is to call
setProgress with a value beyond the end value.

Parameter Type

title String

[start] Integer, default 0

[end] Integer, default 100

[showCancelButton] Boolean, default false

The first parameter is required, the three others are optional.

To move the progress bar you need to regularly call the
setProgress method. SetProgress also returns a Boolean which
corresponds to the ‘Cancel’. You can check its value and interrupt
a lengthy process if so desired.

getDataStore variable Also see setDataStore. This method retrieves data from one of
two associative arrays.

Parameter Type

key String

[useTempDataStore] Boolean

If the optional useTempDataStore parameter is omitted, it
defaults to false.

If useTempDataStore is true, this method accesses a set of data
items that are not saved with the application preferences.

If useTempDataStore is false, this method accesses another set
of data items that are saved along with the application
preferences.

Preferrably you should use a key that starts with a reversed
domain name to avoid conflicts – e.g. Rorohiko would use keys
similar to ‘com.rorohiko.someotherdata’ to avoid key clashes.

launchWith - Launches an external program while passing it a particular file
to open.

If you simply want to open an application without associated
document, you can optionally pass the path to the application via
the first parameter, the document path, and leave the application
path undefined.

Parameter Type

documentPath String

[applicationPath] String

[modeFlags] Integer

For the two paths you’ll typically will want to pass the fsName
attribute of an InDesign File object.

modeFlags is an integer which is calculated by adding zero or
more of the following flag values:

Flag Value

asynchronous 1

background 2

modal 4

Asynchronous launching will return control to ExtendScript
while the application is still being launched.

Background will keep the launched application in the
background.

Modal is a special feature: it will lock InDesign’s user interface
into an artificial ‘modal mode’ until the launched application
quits.

This assists in applications where an external application is used
to develop dialogs that act almost the same as built-in InDesign
dialogs. An example is provided with the documentation.

registerMenuItem - Registers a global menu item into the API menu on the menu
bar. Once registered, a menu item will remain there until
InDesign quits or until it is removed by a corresponding call to
the unregisterMenuItem method.

Parameter Type

eventCode String

menuName String

The eventCode is treated differently depending on its prefix.
There are two possible prefixes: subject- and menu-

Simple context menu: If the eventCode does not start with
either subject- or menu- then the menu will be enabled when one
or more selected page items match the registered eventCode with
their eventFilter mask.

If none of the currently selected page items accepts the event
code, then the menu is disabled. Selecting the menu item will
cause the eventCode to be sent to the selected page items.

One observer for multiple items: If the eventCode starts with
subject- then the menu item will be enabled when one or more
selected page items have one or more observers whose eventFilter
mask matches the registered eventCode. Selecting the menu will
cause the eventCode to be sent to the observers of the selected
page items.

Menu bar menus: If the eventCode starts with menu- then the
menu item will be enabled when one or more objects match the
eventCode with their eventFilter mask.

This is independent of whether these objects are selected or not.
The mere presence of the object with a proper eventFilter causes
the menu item to be enabled.

Typically you will have a scripted plug-in which has an

eventFilter that matches this menuSomething event code

These menu bar menus also work together with the enableMenus
event: each observer which accepts an event code menu… can
optionally also accept an enableMenus event code.

setDataStore - Also see getDataStore. This method stores data in one of two
associative arrays.

Parameter Type

key String

data Variable

[useTempDataStore] Boolean

If the optional useTempDataStore parameter is �oolean, it
defaults to false.

If useTempDataStore is true, this method accesses a set of data
items that are not saved with the application preferences.

If useTempDataStore is false, this method accesses another set
of data items that are saved along with the application
preferences.

Preferrably you should use a key that starts with a reversed
domain name to avoid conflicts – e.g. Rorohiko would use keys
similar to ‘com.rorohiko.someotherdata’ to avoid key clashes.

setProgress Boolean Also see createProgressBar. setProgress accepts a single
parameter, which can be an Integer or a String.

When the parameter is an Integer value between the start and
end values that were passed to createProgressBar, it will move
the progress bar.

If the parameter is an Integer with a value greater than the end
value, the progress bar window will be closed. A simple way to
manage the progress bar window is to call setProgress with
values from start to end+1 – the last call to setProgress will close
the window.

If the parameter is a String, it will change the progress message.

setProgress returns a Boolean which will be true when the user
has clicked the optional Cancel button on the progress bar
window.

The idea is that you regularly call setProgress to move the
progress bar forward, and each time check the return value. If
the return value is true, the user wants to cancel – so you should
exit your processing loop as soon as possible.

unregisterMenuItem - Remove a global menu item from the API menu.

Parameter Type

eventCode String

4. Predefined event codes
It is perfectly acceptable to ‘invent’ most any eventCode you want – when sending
events from one page item you can choose pretty much any descriptive string as

the event code – for example, when defining the event code attached to a context
menu.

These event codes end up in theItem.eventCode – the eventCode property of the
page item whose JavaScript is being executed.

Some event codes are treated differently based on their prefix.

4.1. menu… event codes
Event codes starting with menu… are reserved for handling menu bar menus.

You can invent any event code you want for this, as long as it has the menu…
prefix.

4.2. external… event codes
Event codes starting with external… are not blocked after the plug-in has been
compiled.

Normally, once a scripted plug-in is compiled, it is ‘closed off’ to the outside world
(‘outside world’ meaning: other, non-compiled scripts and compiled scripts with
incompatible component ids). Any calls to handleScriptEvent from the outside
are ignored.

However, an exception is made for any event codes that start with the prefix
external…

By selectively implementing some user defined event codes with this prefix, a
developer can open up a scripted plug-in to other, third party scripts (these can
be JavaScript, AppleScript or VBScript).

4.3. subject… event codes
When implementing context menus using a centralized controller object (see
example in cookbook), you should make sure to prefix all your event codes with
the subject… prefix.

This prefix tells APID that it needs to attach these menu options to any of the
observed subjects of the controller, and not to the controller itself.

Without the subject… prefix, all these context menu options would only appear
on the page item that is wrapped around the controller script.

With the subject… prefix, APID will instead attach the context menu to all
subjects of the controller (as defined via the controller’s List of Subjects field on
the Active Page Item Developer palette).

4.4. Predefined event codes
The predefined event codes listed below are sent automatically by the Active
Page Item Developer plug-in as the result of various external events.

Future versions of the Active Page Item Developer plug-in will most probably
provide additional event codes.

eventCode Description

created Sent when a page item is just created. One way to get this event in
practice is to copy-paste an existing page item that has a script
attached to it – when the copy is pasted, the copied element’s script
will receive a created event and can react to it.

deselected Sent when this page item has been deselected. Also see the
subjectDeselected event code.

docClose Sent when the document is about to be closed.

docDeselected Sent when the document is losing front focus

docLoaded Sent just after the document layout window opens.

docSave Sent when the document is about to be saved.

docSelected Sent when the document was brought to the foreground

docPrint Sent when the document is about to be printed. You can set
theItem.tempDataStore to true to abort the print operation.

docPrintConfigure Sent when the document print setup dialog is about to be shown.
You can set theItem.tempDataStore to true to suppress the
dialog.

docPrintConfigured Sent after the user has finished with the print setup dialog. You can
set theItem.tempDataStore to true to abort the print operation.

theItem.eventData is a string which reflects whether the print
was completed (“success”) or failed (“fail”).

docPrinted Sent after the document was printed.

enableMenus Sent to an observer which also has a menu… event code when the
corresponding menu is about to be displayed on the menu bar.

The event data (theItem.eventData) will contain the menu item
in question, and this method should return an integer value in
theItem.tempDataStore

If theItem.tempDataStore is set to non-zero on exit, then the
menu item will be enabled.

The value returned is a combination of flags:

 0 = kDisabled_Unselected

 1 = kEnabled

 2 = kSelected (checked)

 4 = kMultiSelected (dash)

 8 = kUnderline (not on Windows)

kMultiSelected overrides kSelected.
Don’t attempt to use the return statement – it won’t work.

fileChanged Sent after the observed external file has changed. Also see the
reserved keys for getDataStore/setDataStore: $FILEPATH$,
$LASTMODIFIED$

idle Sent when the application is idle, about once per second. This allows
you to implement background processing tasks.

loadContextMenu Sent when to a page item when the context menu for that selected
item needs to be reloaded.

modified Sent when this page item is being modified. Also see the

subjectModified event code.

modified-objectstyle Sent when the page item is assigned a new object style

modified-recomposed-overset Sent when the InDesign recomposition engine has finished
recomposing the text, and there was some overset text.

modified-recomposed-nooverset Sent when the InDesign recomposition engine has finished
recomposing the text, and there was no overset text.

modified-text Sent when the active page item is a text frame, and the text
contained inside has been reflown (e.g. because text was added or
modified, or the size or shape of the box has changed).

There is a default 3-second lag during which no user activity is seen
before the event is sent – this to avoid a rapid fire of modified-
text events while the user is tapping and editing away.

This event is now deprecated – the modified-recomposed-
overset, modified-recomposed-nooverset and modified-
usertyping events should give better control.

modified-textformat Sent when any text has been assigned a different format.

modified-usertyping Sent when the user has been editing the story associated with the
text frame.

parentModified-recomposed-
overset

Sent when the InDesign recomposition engine has finished
recomposing the text, and there was some overset text in this item’s
parent. This is useful for anchored frames – it allows them to react
to recomposition of the story they are embedded in.

parentModified-recomposed-
nooverset

Sent when the InDesign recomposition engine has finished
recomposing the text, and there was no overset text in this item’s
parent. This is useful for anchored frames – it allows them to react
to recomposition of the story they are embedded in.

parentModified-text Sent when the active page item parent is a text frame, and the text
contained inside has been reflown (e.g. because text was added or
modified, or the size or shape of the box has changed).

There is a default 3-second lag during which no user activity is seen
before the event is sent – this to avoid a rapid fire of modified-
text events while the user is tapping and editing away.

This event is deprecated – the parentModified-recomposed-
overset, parentModified-recomposed-nooverset and
parentModified-usertyping events should give better control.

run Sent when the user selects the Run Script menu item in the Active
Page Item Developer palette menu.

scriptTagChanged Sent after this page item’s script tag was changed.

selected Sent when this page item is being selected. Also see the
subjectSelected event code.

subjectCreated Sent when one of the observed page items was just created. In many
cases, you will want to set the List of Subjects (a.k.a. the
subjectScriptTagList property) to a single * wildcard
expression to capture any new page item being created. This
because most newly created page items have an empty script tag
(unless they are the result of a copy-paste operation). Also see the
created event code.

subjectDelete Sent when one of the observed page items is about to be deleted.
Also see the delete event code.

subjectDeselected Sent when an observed page item has been deselected. Also see the
deselected event code.

subjectFileChanged Sent when one of the observed page items has noticed a changed in
the attached external file which it itself is observing. Also see the
fileChanged event code.

subjectLoadContextMenu Send when the context menu(s) for a number of selected page items
must be calculated. You probably need to analyze app.selection
to decide what context menu array to return.

subjectModified Sent when one of the observed page items has been modified. Also
see the modified event code.

subjectModified-objectstyle Sent when one of the observed page items has been assigned a new
object style. Also see the modified-objectstyle event code.

subjectModified-recomposed-
overset

Sent when the InDesign recomposition engine has finished
recomposing the text in one of the observed page items, and there
was some overset text. Also see the modified-recomposed-
overset event code.

subjectModified-recomposed-
nooverset

Sent when the InDesign recomposition engine has finished
recomposing the text in one of the observed page items, and there
was no overset text. Also see the modified-recomposed-
nooverset event code.

subjectModified-text Sent when one of the observed page items text contents have been
reflown due to some change (e.g. text added or modified, size of box
changed,…). Also see the modified-text event code.

subjectModified-textformat Sent when one of the observed page items text content has been
assigned a different format. Also see the modified-textformat
event code.

subjectModified-usertyping Sent when the user has been editing the story associated with the
observed text frame. Also see the modified-usertyping event
code.

subjectParentModified-
recomposed-overset

Sent when the InDesign recomposition engine has finished
recomposing the text, and there was some overset text in the
observed item’s parent. This is useful for anchored frames – it
allows them to react to recomposition of the story they are
embedded in.

subjectParentModified-
recomposed- nooverset

Sent when the InDesign recomposition engine has finished
recomposing the text, and there was no overset text in the observed
item’s parent. This is useful for anchored frames – it allows them to
react to recomposition of the story they are embedded in.

subjectParentModified-text Sent when the observed item’s parent is a text frame, and the text
contained inside has been reflown (e.g. because text was added or
modified, or the size or shape of the box has changed).

There is a default 3-second lag during which no user activity is seen
before the event is sent – this to avoid a rapid fire of modified-
text events while the user is tapping and editing away.

This event is deprecated – the subjectParentModified-
recomposed-overset, subjectParentModified-recomposed-
nooverset and subjectParentModified-usertyping events

should give better control.

subjectScriptTagChanged Sent when the label property of one of the observed page items
was modified. Also see the scriptTagChanged event code.

5. Predefined keys
When using the getDataStore/setDataStore methods, a few subsets of all possible
keys get special treatment.

5.1. External keys
Any key string that starts with the prefix ‘external…’ is considered a ‘public’ key.
Normally, when a script is compiled by setting its componentId to a non-empty
string, it becomes inaccessible to ‘outside’ scripts: its script code and data stores
are closed for external access. However, data store elements whose key starts
with the ‘external’ prefix remain accessible to ‘outside parties’.

5.2. Reserved keys
Any key string that starts and ends with a dollar sign is reserved for use by the
plug-in.

The following such key strings are already defined and in use:

$ADORNMENT<adornmentID>$ (where <adornmentID> should be replaced by a unique
string – preferably a reversed domain name, with possibly an underscore prefix).
This allows you to add adornments to page items – these can either be temporary
or permanent – depending on whether you use the tempDataStore or the
dataStore. For more info see further - 9.8 Adornments

$DELAY_<eventcode>$ (where <eventcode> should be replaced by one of the APID
event codes): defines a delay for various events, expressed in milliseconds. By
default, the only event code that has a delay is modified-text, which has a
default delay of 3000 milliseconds. The corresponding reserved key is
$DELAY_modified-text$ (with an underscore after DELAY, and a dash between
modified and text).
This mechanism can be used for all APID-generated events, so if you’d execute
theItem.setDataStore("$DELAY_selected$",2000); and then the user would
select/deselect a page item many times in quick succession (less than 2 seconds
between successive selections), you'll only get a single selected event.

$DEMO_TIMED_OUT_MESSAGE$: Contains a message that is displayed when you have
used the optional licensing restrictions when compiling your plug-in. This
message is used when your plug-in is in ‘lapsed-demo’-mode and the user
attempts to first access your plug-in during an InDesign session. A ‘demo
version’ dialog will appear showing this message.

In both these message strings you can use two ‘placeholders’ - ^1 and ^2. The
substring ^1 will be replaced by your plug-in’s component name, and the
substring ^2 will be replaced by the number of remaining demo days before the
demo times out.

$FILEPATH$: File path of the file being observed through use of the fileChanged
event code. Uses the $LASTMODIFIED$ entry to keep track of when the file was last
modified – if the last modified date on the file changes, it will fire a fileChanged
event.

$GROUP_EVENTS$: by default contains false. Can be set to true, after which events
received by this particular page item will be grouped for efficiency whenever
possible.

If multiple similar events need to be sent to this same target item, they will be
grouped, and the theItem.eventSource can either be a single event source, or it
can be an array of multiple grouped event sources.

$GROUP_EVENTS$ also affects the way the enableMenus event is handled.

If $GROUP_EVENTS$ is set to false, a separate enableMenus event will be sent for
each individual menu item in the current menu group.

If $GROUP_EVENTS$ is set to true, the event data will be an array containing
multiple menu event codes, and an array of booleans must be returned – one for
each menu event code in the array that was received via the event data.

$GROUP_EVENTS$ can greatly reduce overheads, for example when processing
subjectSelected when the user does a ‘Select All’: instead of causing many
events, only a single grouped event will be fired.

$LASTMODIFIED$: Used to keep track of the last modification of the file being
observed by the fileChanged event. Also see $FILEPATH$.

$LICENSE_MESSAGE$: Contains a message that is displayed when you have used
the optional licensing restrictions when compiling your plug-in. This message is
used when your plug-in is in demo-mode and the user first accesses your plug-in
during an InDesign session. A ‘demo version’ dialog will appear showing this
message.

$LICENSE_URL$: Contains a URL to be used when you have implemented the
optional licensing restrictions when compiling your plug-in. This URL is accessed
when your plug-in is in demo-mode and the user clicks one of the ‘Get License…’
buttons on the APID about screen or ‘demo version’ dialog.

In this URL you can use a number of ‘placeholders’ - ^1, ^2. ^3, and ^4. The
substring ^1 will be replaced by the serial number of the copy of InDesign that is
currently running, and the substring ^2 will be replaced by the name of your
scripted plug-in. Substring ^3 will be replaced by a unique system identifier for
the computer requesting the license. String 3 is formatted as xx:xx:xx:xx:xx:xx
with each ‘x’ a hexadecimal digit. Substring ^4 is replaced by a letter R, D or E –
reflecting the level of API license that the computer has installed. R = free APIR
license, D = licensed for APID, E = licensed for APIE.

$PLUGINLEVEL$: The current ‘level’ of APID ToolAssistant installed (returns a
letter ‘R’, ‘D’ or ‘E’). ‘R’ = unlicensed APID ToolAssistant or Active Page Item
Runtime, ‘D’ = licensed APID ToolAssistant, ‘E’ = Active Page Item Enterprise.

$PLUGINNAME$: Name of the installed APID ToolAssistant (or compatible).

$SPLNVERSION$: can be used to store a version number for the compiled .spln file.
The APIDTemplate.indd provided in the APIDToolkit release has code that
demonstrates how to use this. The end-result is that the API About Window will
display a version number for any compiled .spln files that use this feature.

$VERSION$: Contains the string form of the version number of the APID
ToolAssistant plug-in; accessing theItem.getDataStore(”$VERSION$”) gives you a
handy means of making your script more resistant against changes in the
functionality of the APID ToolAssistant plug-in.

5.3. What does a componentId do?
Before diving too deep into component id strings: make sure you try out the
APIDTemplate.indd document that is provided with APID – it automates a great
deal of the complexities surrounding component ids. Check the cookbook for a
practical example.

Component id strings are page item properties that are used to ‘lock’ your
JavaScripts and make sure they cannot be visually or programmatically
inspected and are not stored in a readable format.

Also, compiled code cannot be inspected through the script debugger. Enabling
the debugger will disable any compiled scripts whose component id is not the
empty string. If you want to debug a compiled script, you must use an empty
component id during the debug phase.

Component ids also allow you to create time-limited demo versions of your
scripts that stop working after a certain date or after a certain number of days
have passed.

Demo versions of your scripts can be converted into fully enabled versions by
sending your end-user a small ‘license file’ which contains encrypted data that
enables a particular copy of InDesign (identified by the first 20 characters of its
24-character activation code and optionally a 17-character system id) to run a
particular component id.

Once a componentId has been assigned to a page item, its Active Page Item
Developer data become inaccessible for inspection.

The Active Page Item Developer data is only available to scripts attached to those
page items with a compatible component id – compatible component ids have the
same password in the second subfield of their name field.

Page items with incompatible or empty component ids cannot access the locked
properties and methods (except for event codes and data store keys that start
with the prefix ‘external…’)

This allows the creation of a ‘swarm’ of page items that can access each other’s
Active Page Item Developer data, but are inaccessible for anything outside the
swarm.

When you want to distribute your scripts to third parties, you can go about it
several ways.

First, you could attach a number of scripts to a number of page items in a
(template) document, and distribute the template document. In that case, you’d
have to assign the same componentId to each of the elements that has a script
assigned to it and is part of your scripted solution.

The better solution is to store your scripts in a single page item, and make the
page item into a ‘controller’, which observes other page items.

Now you only have to protect a single page item by setting its component id.

An additional benefit is that you can ‘compile’ this single page item into a so-
called ‘scripted plug-in’. (It is not a ‘real’ compilation - all that happens is that
the encrypted Active Page Item Developer data is saved into the scripted plug-in
file. Behind the screens it is still the same JavaScript. Optionally, comments and
unnecessary white space can be removed during compilation).

A scripted plug-in will start its life simply as some box on a spread with some
script attached to it.

The box is made into an observer, and can be tested. Once it all works correctly,
it can be made to save its ‘Active Page Item’ contents into a stand-alone .spln file
which is stored in the plug-ins folder by calling its saveToPlugin method.

When a document is opened or a new document is created, the .spln file is loaded
and made into a ‘page-item-like’ entity that observes and reacts to events just
like normal active page items do.

6. Licensing your code

6.1. ComponentId structure
A component id is a structured string. You compose it from the following comma-
separated fields:
name,minVersion,endYear,endMonth,endDay,numactual,numdemo

name itself is composed of the following three or four semicolon-separated
subfields:
softwareName;password;copyright[;Free]

None of these fields should contain commas or semicolons. Preferrably, the
password should also not contain any slash characters.

softwareName is a descriptive name that describes the software.

password is a string that locks out external access by ‘outside scripts’.

copyright is a string that could include your (company) name and other copyright
information.

The optional fourth field is the word Free (with uppercase ‘F’). If this word is
present, the software will not need a license file to run. It is still locked against
inspection, but anybody who has a licensed APID ToolAssistant plug-in installed
can make use of your script without need for a license file.

minVersion is a version number in the form n.nnn or n.n.nn, which reflects on
the version number of the Active Page Item plug-in: the script will only be active

if the version number of the Active Page Item is at least this version number.
Also see the predefined key $VERSION$ for the getDataStore/setDataStore
methods for an alternate version-checking approach.

endYear, endMonth, endDay allow the creation of time-limited demo-solutions:
your encrypted script will cease to be active after this date (unless a license file
is installed).

numActual and numDemo are an alternate form of time-limitation: they allow
the demo-solution to be used for numDemo consecutive days, or for numActual
days of actual use.

All three forms of time limitation can be used concurrently - whichever times out
first determines when the script stops working.

6.2. Beg Window and About Window
There are a few other relevant bits of data with regards to the licensing system.

For stand-alone scripts, there are three text fields that can be configured via the
InDesignScriptCompiler.

For scripted plug-ins, there are three keys $LICENSE_URL$, $LICENSE_MESSAGE$,
$DEMO_TIMED_OUT_MESSAGE$ which can be used with the
getDataStore/setDataStore methods on the object that corresponds to your
scripted plug-in. You would normally initialize these prior to compilation. Check
the APIDTemplate.indd document for example code.

$LICENSE_URL$ or the contents of the License URL field in the
InDesignScriptCompiler:
this URL is accessed when your script or plug-in is in demo-mode and the user
clicks one of the ‘Get License…’ buttons on the APID About… screen or the ‘demo
version’ dialog (also known as ‘the beg window’). You would normally set this to
point to a URL on your web site.

In this URL you can use four ‘placeholders’ - ^1, ^2, ^3, and ^4. The string ^1
will be replaced by the serial number of the copy of InDesign that is currently
running, and the string ^2 will be replaced by the name of your scripted plug-in
(as extracted from the componentId). Substring ^3 will be replaced by a unique
system identifier for the computer requesting the license. String 3 is formatted
as xx:xx:xx:xx:xx:xx with each ‘x’ a hexadecimal digit. Substring ^4 is replaced
by a letter R, D or E – reflecting the level of API license that the computer has
installed. R = free APIR license, D = licensed for APID, E = licensed for APIE.

$LICENSE_MESSAGE$ or the contents of the Licensing Message field in the
InDesignScriptCompiler: this message is displayed when your plug-in or script is
in demo-mode and the user first accesses your plug-in during an InDesign
session.

$DEMO_TIMED_OUT_MESSAGE$ or the contents of the Timed Out Message field in the
InDesignScriptCompiler:
this message is displayed when your plug-in or script is in ‘lapsed-demo’-mode
and the user attempts to first access your plug-in or script during an InDesign
session.

In both these message strings you can use two special ‘placeholders’ - ^1 and ^2.
The string ^1 will be replaced by the name of your plug-in, and the string ^2 will
be replaced by the number of remaining demo days before the demo times out.

6.3. License Generator
The component id system works in conjunction with a command-line utility,
which allows you to generate license files for your compiled plug-in and compiled
scripts.

In order to create a proper license, you need the APIDLicenseGenerator
command-line utility.

You could have a look at the APIDTemplate.indd example document – it
automates a few of the steps described below, and provides a copy-paste-able
command line template in the generated template files.

Preparing
Start a command line session (use the Terminal application from the Mac OS X
Applications/Utilities folder, or the Command Prompt from the Start –
Programs – Accessories menu item on Windows).

Navigate to the proper location.

On Windows, if you have more than one drive letter (not just C:, you might need
to change drive first – e.g. if the command line utility resides in a folder that is
located on drive F, you first enter a command line ‘F:’ (the drive letter, followed
by a colon, followed by <Return> or <Enter>).

 You can the navigate quickly to the correct folder by typing ‘cd ‘ (cee dee
followed by a space) on the command line, and then dropping the folder icon of
the folder which contains the command line utility into the command line
window. Then press <Return> or <Enter>. This works on Mac OS X and on
Windows.

Command line parameters
This utility accepts 5 or more parameters, separated by spaces.

Parameter 1 is the name of the license file (without the .license suffix – the
license generator will automatically append the suffix).

Parameter 2 is composed of the name and the password used in the component id
(see previous section about the component id structure). The softwareName and
password are to be separated by semicolons. This parameter is case-sensitive. It
is best to enclose this command-line parameter in quotes.

Parameter 3, 4, 5 are either all equal to -1, or they can be a year, month, day
value – this allows you to generate time-limited license files. In most cases, you’ll
set these all to -1.

Parameter 6 and beyond is optional. If you omit parameter 6 and beyond, you
will generate a ‘global’ license file, which works on all copies of InDesign,
irrespective of their serial number.

You will normally include one or more InDesign serial numbers and system ids
as parameter 6, 7… When you do, you’ll generate a license file that targets those
specific serial numbers and system ids.

InDesign serial numbers consist of the first 20 characters of the 24-character
InDesign activation code – you don’t need a user’s full activation code. The 20-
character serial number is displayed on the InDesign ‘About’ screen.

After each serial number listed you can optionally add a system id – if you omit
the system id, then the license file will work on all computers that share the
same InDesign serial number.

System ids are formatted as xx:xx:xx:xx:xx:xx (where each ‘x’ is a hexadecimal
digit).

You need the user’s InDesign serial number, as well as the exact name
componentId part that was used when compiling the plug-in.

Example
Let’s assume you’ve already fired up a command-line window, and navigated to
the correct location.

For the sake of the argument, assume the serial number of your end-user’s copy
of InDesign is
12345678901234567890
and the component id you used for compiling your scripted plugin was
testPlugin;myPassword;(c) 2005 MyCompany Ltd,1.0.22,-1,-1,-1,20,20

That means that the command line would look like this on Mac OS X:
./APIDLicenseGenerator testFile “testPlugin;myPassword” -1 -1 -1
12345678901234567890

and on PC:
APIDLicenseGenerator testFile “testPlugin;myPassword” -1 -1 -1
12345678901234567890

That will generate a file called testFile.license that has to be imported by the
end-user in order to lift the demo restrictions. This particular license file will
work on all computers that share the same InDesign serial number.

If you also have a system id AA:BB:CC:11:23:45 (which you retrieved from the
$LICENSE_URL$-based URL emitted when the user clicked ‘Get License…’), you’d
use:
./APIDLicenseGenerator testFile2 “testPlugin;myPassword” -1 -1 -1
12345678901234567890 AA:BB:CC:11:23:45

on Mac OS X, and on PC:
APIDLicenseGenerator testFile2 “testPlugin;myPassword” -1 -1 -1
12345678901234567890 AA:BB:CC:11:23:45

That will generate a file called testFile2.license. This license file will work only
on the particular computer that was used to request the license, and only with
the copy of InDesign with this particular serial number.

6.4. Combined .spln/APID ToolAssistant license.
From APID 1.0.44 onwards, an enhanced licensing system has become available
which allows a script developer to provide his customers with special license files
for his scripted tools which can optionally embed a license for APID
ToolAssistant if needed.

This makes it easier for an end-user to get the needed licenses. Instead of
needing two license files - a license file from the script developer for his scripted
solution, and a second license file from Rorohiko for APID ToolAssistant - the
end-user can now use a single, combined license file provided to him by the script
developer.

In order to use the enhanced licensing scheme, the script developer needs to use
an 'approved componentId' for his commercial, APID-based .spln files. For
example, if the ‘normal’ component id he’s using were:
TestAPID;MyPassword;(c) 2008 Rorohiko Ltd.,1.044,-1,-1,-1,3,4
then the script developer could get this component id approved by Rorohiko.

Approving means that the componentId password is prefixed with a unique
approval number and a slash - for example it would become something like:
TestAPID;12345654654/MyPassword;(c) 2008 Rorohiko Ltd.,1.044,-1,-1,-1,3,4

The script developer can still change parts of the component id without
invalidating the approval number; but four of the fields are locked after
approval:
- the component license name (TestAPID in the example)
- the copyright string (e.g. (c) 2008 Rorohiko Ltd.)
- the two demo-day-counts (e.g. 3 and 4).

The script developer can change the other component id fields (e.g. the minimum
APID ToolAssistant version, the end year, month, day, and the password)
without invalidating the approval number.

Of course, getting an approved component id is not a must, but has the
advantage that it gives the script developer access to this enhanced licensing
scheme.

The idea is that Rorohiko approves only reasonable demo times for third party
tools - e.g. we would not approve a request for a component id with demo-days
set to 1000 days or so.

Now suppose an APID-based developer has an approved component id and he
uses it for a commercial tool.

Also suppose an end-user installs a demo of this tool, and the end-user has a
timed-out demo version of APID ToolAssistant installed (e.g. because he’s tried
out the APIDToolkit demo some time earlier).

Here's the advantage of an approved component ID: even though the end-users'
APID ToolAssistant has timed out, it will still allow any demo of any tool with an
approved component ID to work normally for the duration of the .spln demo
time.

In this case, the APID ToolAssistant-based tool demo would be allowed to work
normally, until the end of its own demo period, but the end-user would still not
be able to use APID ToolAssistant to build another .spln (because it's a lapsed
demo, and he's had his chance to try APID Toolkit).

Essentially, an approved component id 'overrides' the lapsed demo status of
APID ToolAssistant, until the component id’s own demo time-out takes effect.

That fixes the issue of getting stuck with a 'dead' APID ToolAssistant during a
developer demo time-out period.

To make licensing easier, a developer will then be able to request from Rorohiko
the creation of a license file for an approved tool that also has an additional
APID ToolAssistant license 'embedded' in the same file.

Control of this ‘combined’ license file generator remains at Rorohiko.

Some time into the future there will be a protected tool that's accessible via the
web where a script developer can log in and enter his component id data, the
user's InDesign serial number and system id, and in return he will get a license
file which has the APID ToolAssistant activation embedded as well as the
activation for his own tool.

This tool will be 'web-linkable' so the script developer will be able to
transparently embed it into his own web site, and all operations can stay
transparent for the end-user.

This tool is not available yet. Until this web-based tool becomes available,
combined license files will need to be requested via e-mail – contact
APIDlicenses@rorohiko.com

At the end of a pre-agreed time period, the developer will then be invoiced by
Rorohiko for the number of APID ToolAssistant licenses that have been
embedded in such a way.

In this enhanced licensing scheme, the end-user now receives a single license file
from the script developer, and this single license file activates both APID and the
scripted software.

6.5. Licensing System Limitations
No guarantees are being made that the licensing system for scripted plug-ins
and locked page items provided by this plug-in is ‘hacker-resistant’. There is no
doubt about it that a determined hacker can crack the licensing scheme.

7. Filtering Script Tags
There are two levels for filtering labels.

The first level is defined by the subjectScriptTagFilter property - it determines
what page elements are to be observed. Any page item whose label matches at
least one of the listed wildcard expressions becomes an observed subject,
observed by this page item.

The second level of filtering is optional, and resides inside the eventFilter
expression: for each selected eventCode, there is an optional list of wildcard

expressions for script tags, which allows you to further restrict the page items
whose events are to be processed.

If the second level of filtering is present, then only page items that pass both the
first and second level filtering will be able to send or cause events to be
processed by this observer.

8. Event Filter Expressions
An eventFilter string is composed of a comma-separated list of zero, one, or more
event expressions.
eventFilter :=
 [<eventExpression> [‘,’ <eventExpression>]...]

An eventExpression is composed of an event code, and optionally a list of label
expressions in parenthesis.

These label expressions used to further filter the labels of any page items that
were already filtered through the subjectScriptTagFilter (i.e. when calculating
the list of page items whose events to handle, the plug-in will first take into
account the subjectScriptTagFilter before ever examining the label expressions
in the eventFilter.
eventExpression :=
 <eventCode>
 [‘#’ <engineName>]
 [‘(‘ <labelExpression> [‘,’ <labelExpression>]... ‘)’]

An eventCode is composed of a main event code string, optionally followed by a
repetition of dashes and an event code suffixes (also known as sub-event code
suffix).
eventCode :=
 <mainEventCode> [‘-’ <subEventCode>]…

An engineName is the optional name of an InDesign scripting engine. In
InDesign CS and CS2, these engineName are ignored. In InDesign CS3, they are
used to determine what script engine should process the event when it is
received.

A labelExpression is a wildcard string for matching labels (also known as script
tags) – events caused by any item whose label matches this expression will be
passed on to the attached JavaScript.
labelExpression :=
 <wildcardString>

The mainEventCode is an alphanumeric string. For your own events (e.g. used
with the handleScriptEvent method or with the contextMenu property) you can
use any string you want.

The APID ToolAssistant plug-in also generates a number of pre-defined event
codes depending on external events taking place.

mainEventCode :=
 <alphaNumString>

Some events utilize a sub-event code to allow further filtering. For example, two
of the internally generated events are modified and modified-text.

For all intents and purposes, modified-text is a modified event, but further
refined. To correctly capture all modified events, you should use the modified*
wildcard expression, which matches all modified events.
subEventCode :=
 <alphaNumString>

alphaNumString and wildcardString are basic building blocks used for the other
items – alphaNumString should not start with a digit.
alphaNumString :=
 string of a-z, A-Z, 0-9, $, _

In a wildcardString, the * means: 0 or more characters; the ? means: exactly one
character.
wildcardString :=
 string of a-z, A-Z, 0-9, $, _, * and ?

Example Event Filter Expression:
subjectSelected(yellow*Box,green*Box),subjectDe*(*Box),subjectModified-text(*Text*)

This filters subjectSelected events from any page item that has a label starting
with yellow or green and ending in Box - e.g. yellowAdBox, greenTextBox,
yellowBox,...

It also captures any event whose code starts with subjectDe… for any page item
whose label ends in Box - e.g. subjectDeselected events from yellowBox,
yellowAdBox,....

Lastly, it detects modified-text events (mainEventCode = modified,
subEventCode = text) originating from any page item whose label contains the
word Text - e.g. greenTextBox,...

9. Being a good script citizen
When developing scripts, it is important to observe some basic rules in order to
avoid conflicts between multiple scripts, especially in InDesign CS and CS2.

9.1. Scripts can run unexpectedly
Because Active Page Items allows event-driven programming, you need to take
into consideration that some innocuous commands can cause other scripted event
handlers to launch and run during the execution of your script.

For example, calling app.documents.add() will trigger a docLoaded event for
scripts monitoring this event. These scripts will be executed ‘inside’ the
app.documents.add() command.

Any scripted command that can cause an event to be triggered can cause a ‘sub-
script’ to run.

This means that scripts must always be careful not to unnecessarily disturb the
environment they are running in – as to not disrupt the operation of the ‘outer’
script.

9.2. Globals and function names are often shared
The issue discussed in 8.1 has another side effect: if a script command causes an
event to fire and a sub-script to run, then the outer script and the inner script
share the same global variable space.

That means that global variables should be avoided as much as possible – local
variables and function parameters are the best way to store and pass data.

Using unique prefixes
If you really must use a global variable, its name should be as unique as possible
– the ‘proper’ behavior would be to name every global variable with a unique
prefix related to the name of your application.

For example, Rorohiko’s ChatterGoofy.spln uses a global whose name is
gChatterGoofyPlugin.

This reduces the risk of clashes: the odds that the end-user would be running
TWO applications that both are named ChatterGoofy is pretty remote.

Function names are another point of potential clashes – running a sub-script
which redefines certain functions can will have unwanted side-effects.

In order to further reduce the odds of conflicts, Rorohiko will run a registry of
global name prefixes – every script developer can check with us whether a
particular prefix is already used, and if not, register a particular prefix with us.
Contact pluginsupport@rorohiko.com with your request – things will be pretty
manual at first, but eventually we’ll switch to an automated system.

Prefixes should be composed of letters and/or digits and start with an uppercase
letter (i.e. no underscores etc – letters and digits only).

There is no enforcement of prefixes! Registering a particular prefix simply means
you are letting the world know you intend to use global names of the form:

<lowercase letter><Prefix><variableName>

and function names of the form:

<Prefix><functionName>

i.e. the prefix has to be prefixed with a single lower case letter before use to
name a global or constant.

Typical letters are ‘g’ for globals, ‘k’ or ‘c’ for constants. Examples:
gChatterGoofyPlugin, cChatterGoofyWindowWidth,
ChatterGoofy_CalculateNewStory(),…

If the world chooses to ignore this, there is little that can be done except starting
a dialog with the ‘clashing party’ – Rorohiko will never enforce adherence to
prefixes; it’s all purely voluntary.

Choosing less common prefixes will also help in avoiding clashes, even with
scripts that do not adhere to the convention.

Embedding the script inside a protective function
Another good way to avoid clashes is to always wrap the complete body of your
plug-in code inside a protective function.

As long as you make sure that all variables are declared with the ‘var’ command,
they would act like globals, but they are actually local to the wrapper function.
PluginMain();

function PluginMain()
{
 var x;
 function AddOneAndX(y)
 {
 return(y+1+x);
 }

 x = 1;
 alert(AddOneAndX(x));
 alert(x);
}

Within the whole body of PluginMain, the variable x acts as a global variable –
e.g. it is accessible from inside AddOneAndX. Also, AddOneAndX is not accessible in
the global scope.

We are currently considering automating the above approach in Active Page
Items – i.e. starting with some future version, there would always be an invisible
wrapper around any plug-in code.

That would not completely close the door on abuse of global variables – if the
developer forgets to declare the variable name with var he would still be
accessing a variable in the outermost global scope.

It is possible to go even one step further, and not even define a function like
PluginMain by using an anonymous function, for example like this:
(function(theItem)
{
 var x;
 function AddOneAndX(y)
 {
 return(y+1+x);
 }

 x = 1;
 alert(AddOneAndX(x));
 alert(x);
})(theItem);

Use a ʻprivateʼ engine
From InDesign CS3 onwards, you can use a separate, private ExtendScript
engine in order to avoid clashing with other people’s scripted material.

Also see section 8. Event Filter Expressions, and look for the use of engineName.

9.3. Be aware of hidden nesting
Keep in mind that your script might be called recursively – if you choose to use a
single controlling script, which handles a variety of events, you will often find
that your script is called in a nested way.

For example, while processing docLoaded, your script might be causing modified
events to occur, causing nesting to occur.

For example, suppose your script starts with:
...
gChatterGoofy_EventReceiver = theItem;
...

When nesting occurs, you can have all kinds of unexpected behavior with such
command. The nested script overrides whatever the content of
gChatterGoofy_EventReceiver was, and upon return, the outer script will
probably break because this variable has unexpectedly changed value.

Instead it is much better to write ‘trigger-once’ code for globals – for example:
...
var gChatterGoofyPlugin;
if (gChatterGoofyPlugin == undefined)
{
 gChatterGoofyPlugin = RetrieveScriptedPlugin(theItem);
}
...

With this approach, even when nesting occurs, the variable gChatterGoofyPlugin
will keep its original value.

9.4. Donʼt redefine built-in functions
A user reported a conflict between an existing, stand-alone ExtendScript
application and Active Page Items – the script failed with a strange error when
Active Page Items was installed, and worked fine without Active Page Items.

It turned out neither the stand-alone script nor Active Page Items was at fault,
but the two together were clashing.

The stand-alone script contained a custom function named resolve – which is
perfectly legal.

However, resolve is also the name of a built-in function – one that Active Page
Items relies on heavily.

What happened was that due to nesting, Active Page Items was now calling the
redefined version of resolve, with all kinds of dire consequences.

One way to avoid these types of conflicts is to only use function names that start
with an upper case letter – all built-in functions start with a lower case letter.

9.5. Be aware that the user interaction level might change.
If your script needs to show a dialog, you should make sure you test and possibly
change the current user interaction level – other scripts might have changed this
level causing your dialog to be disabled.

The following example function works for both CS, CS2 and CS3.
function EnableDialogs()
 {
 var done = false;
 try
 {
 app.userInteractionLevel =
 UserInteractionLevels.interactWithAll;
 done = true;
 }
 catch(err)
 {
 }
 if (! done)
 {
 try
 {
 app.scriptPreferences.userInteractionLevel =
 UserInteractionLevels.interactWithAll;
 done = true;
 }
 catch(err)
 {
 }
 }
 return done;
 }

This function is a bit ‘rude’ – it might be better to save the current interaction
level first, and restore it after the dialog has been shown.

9.6. Cannot immediately close or save a document from a
handler.
When you attempt to close or save a document from an event handler script, you
will notice that this command is not executed straight away.

Active Page Items is not able to close or save a document when a handler is in
progress. Instead it will postpone the request until the handler finishes.

For example, the following script will exhibit different behaviors when it is
executed as a stand-alone script (via the Scripts palette) compared to when it is
executed as a handler (e.g. in the docLoaded handler).
alert(app.documents.length);
var theTempDoc = app.documents.add();
theTempDoc.label = “xyz”;
theTempDoc.close(SaveOptions.no);
alert(app.documents.length);

When executed as a stand-alone script, the two alerts will display the same
value.

When executed as an event handler, the second alert will show a value one
higher than the first alert – theTempDoc cannot be closed immediately. It will be
closed later on, after the handler finishes.

It is allowed to call theTempDoc.close() multiple times – any additional calls will
be ignored. However be careful not to introduce endless loops – for example:
var theTempDoc = app.documents.add();
theTempDoc.label = “xyz”;
while (app.documents.length > 0)
 app.documents.item(0).close;

In a stand-alone script, the above example would work correctly, but when this
construct is used in a handler, app.documents.length will remain positive
(because the document cannot be closed yet), and the script will loop forever.

9.7. The script engine version is global
For compatibility reasons, the InDesign CS3 script interpreter can be switched
back to be compatible with InDesign CS2’s ExtendScript interpreter.

When doing so, keep in mind that this affects all script engines in InDesign CS3
– so you should put this back to whatever value you found it to be at first, after
your script finishes executing.

9.8. Adornments
ExtendScript syntax is shown below, but VBScript and AppleScript syntax are
analogous - see samples further down.
theItem.setDataStore(
 "$ADORNMENT<unique_key>$",
 <adornment>,
 useTempDataStore);

The last parameter (useTempDataStore) is optional, and defaults to 'false'.

<unique_key> should be a unique string, preferably based on your reversed
domain name, to avoid clashes with other APID developers.

Adornments are a shared resource, and more than one adornment-using script
might be installed. By using a unique key, clashes between multiple adornments
are avoided; they will be shown concurrently.

<adornment> is either a string or an array. If it's a string, a simple label
adornment is shown on top of the page item.

If it's an array then it contains the following elements, which are all optional
except for the first element:
[<label>, <pngfile>, <side>, <fillcolor>, <textcolor>, <strokecolor>,
<direction>]

Only the first element (<label>) is necessary.

<label> can be null or a string

<pngfile> can be a (pathless) file name or a File object.

<side> is 1, 2, 3 or 4 (1=top, 2=left, 3=bottom, 4=right)

the three <...color> entries each are 3-element arrays with floating point RGB
values from 0 to 1 (e.g. [1.0, 0, 0] is red)

<direction> is 0 (left-to-right) or 1 (right-to-left)

<pngfile> can be a File object - but it's not recommended. Using a File object
makes the adornment dependent on the presence of a PNG file on some absolute
path.

Transporting a document to another computer would nearly certainly invalidate
that path, and the adornment would not display any more.

Instead, the preferred way is to use a simple file name (without path). The
corresponding PNG file can then be installed anywhere below the InDesign
application folder - APID will find it and pick it up.

If you're using .spln-based deployment, you would simply store your PNG files
together with your .spln file in some subfolder of the Plug-Ins folder.

If you're using normal InDesign scripts, you would probably create a subfolder
somewhere inside the InDesign Scripts folder, and store your script and your
PNG files in there.

Because there's no way you can enforce or guarantee that end-users will install
things the way you prefer, APID is made oblivious to the Plug-Ins or application
folder structure - .spln files can be anywhere below the Plug-Ins folder, PNG files
can be anywhere below the application folder,... and things will still be picked up
and linked up correctly.

A drawback of such a lenient matching system is that PNG file names must be
globally unique - so for widely distributed APID-based scripts or .spln files, you
should use a domain name or GUID-based scheme to make sure your PNG files
have a unique file name.

For example, we would use com.rorohiko.textexporter.ignoredframe.png as a
file name, and we'd be fairly sure no-one else would have a same-name PNG file
installed anywhere under the InDesign application folder.

Adornment entries are picked up by APID both from the dataStore and the
tempDataStore - any entries that have a key that starts and ends with a dollar
sign, and begin with $ADORNMENT are considered adornment entries.

tempDataStore entries are purposely non-persistent - this would allow you to
have adornments that 'disappear' when the document is opened on a computer
where your .spln is not present.

The idea is that on processing of the docLoaded event you would re-create the
necessary tempDataStore entries to make your adornments display.

Then, on a computer where your spln is missing, the entries won't be re-created,
and the adornments won't show up - which is what you'd typically want.

dataStore entries, on the other hand, are persistent - so you can create
adornments that survive even if your script or .spln file is inactive or missing (as
long as the APIDToolAssistant is still alive and the needed PNG files are still
installed).

See

http://www.rorohiko.com/wordpress/?p=4

for some more info.

ExtendScript sample code:
// Add a permanent little label "Hello" in the top left
// corner of a page item 'theItem'
// Label remains after document is closed and reopened
theItem.setDataStore(
 "$ADORNMENT_com.rorohiko.kris.test1$",
 "Hello"); // uses dataStore

// Add a temporary little label "Hello" in the top left
// corner of a page item 'theItem'
// Label disappears after document is closed and reopened
theItem.setDataStore(
 "$ADORNMENT_com.rorohiko.kris.test1$",
 "Hello",
 1); // uses tempDataStore

// The two samples above use a shorthand syntax.
// The next two samples do exactly the same but
// now using the 'full' syntax.
// Add a permanent little label "Hello" in the top left
// corner of a page item 'theItem'
// Label remains after document is closed and reopened
// Uses a three-element array: label content,
// PNG file name (set to null),
// what side (1 = top)
theItem.setDataStore(
 "$ADORNMENT_com.rorohiko.kris.test1$",
 ["Hello",null,1]); // uses dataStore

// Add a temporary little label "Hello" in the top left
// corner of a page item 'theItem'
// Label disappears after document is closed and
// reopened
theItem.setDataStore(
 "$ADORNMENT_com.rorohiko.kris.test1$",
 ["Hello",null,1],
 1); // uses tempDataStore

// Next two samples show the labels at the left (side 2)
// and bottom (side 3) of the page item, and use a PNG
// element instead of a string
theItem.setDataStore(
 "$ADORNMENT_com.rorohiko.kris.test1$",
 [null,"myIcon.png",2]); // uses dataStore

theItem.setDataStore(
 "$ADORNMENT_com.rorohiko.kris.test1$",
 ["Hello","myBackground.png",3],
 1); // uses tempDataStore

AppleScript sample code:

tell application "Adobe InDesign CS3"
 set theItem to the first item of the selection
 tell theItem
 -- Add a permanent little label "Hello" in the
 -- top left corner of a page item 'theItem'
 -- Label remains after document is closed and reopened
 set data store key "$ADORNMENT_com.rorohiko.kris.test1$" value "Hello"

 -- Add a temporary little label "Hello" in the
 -- top left corner of a page item 'theItem'
 -- Label disappears after document is closed and reopened
 set data store key "$ADORNMENT_com.rorohiko.kris.test1$" value "Hello"
with use temp data store param

 -- The two samples above use a shorthand syntax. The next two
 -- samples do exactly the same but now using the 'full' syntax
 -- Add a permanent little label "Hello" in the top left corner
 -- of a page item 'theItem'
 -- Label remains after document is closed and reopened
 -- Uses a three-element array: label content, PNG file name
 -- (set to null), what side (1 = top)
 set data store key "$ADORNMENT_com.rorohiko.kris.test1$" value {
"Hello", null, 1 }

 -- Add a temporary little label "Hello" in the top left corner
 -- of a page item 'theItem'
 -- Label disappears after document is closed and reopened
 set data store key "$ADORNMENT_com.rorohiko.kris.test1$" value {
"Hello", null, 1 } with use temp data store param

 -- Next two samples show the labels at the left (side 2) and
 -- bottom (side 3) of the page item,
 -- and use a PNG element instead of a string
 set data store key "$ADORNMENT_com.rorohiko.kris.test1$" value { null,
"myIcon.png", 2 }

 -- Next two samples show the labels at the left (side 2) and
 -- bottom (side 3) of the page item,
 -- and use a PNG element instead of a string
 set data store key "$ADORNMENT_com.rorohiko.kris.test1$" value {
"Hello", "myBackground.png", 3 } with use temp data store param

 end tell

end tell

VBScript sample code:

Set myInDesign = CreateObject("InDesign.Application.CS4")
Set theItem = myInDesign.Selection.Item(1)

Dim params(3)

' Add a permanent little label "Hello" in the top left
' corner of a page item 'theItem'
' Label remains after document is closed and reopened
theItem.SetDataStore "$ADORNMENT_com.rorohiko.kris.test1$", "Hello" ' uses
dataStore

' Add a temporary little label "Hello" in the top left
' corner of a page item 'theItem'
' Label disappears after document is closed and reopened
theItem.SetDataStore "$ADORNMENT_com.rorohiko.kris.test1$", "Hello", 1 '
uses tempDataStore

' The two samples above use a shorthand syntax. The next
' two samples do exactly the same but
' now using the 'full' syntax
' Add a permanent little label "Hello" in the top left
' corner of a page item 'theItem'
' Label remains after document is closed and reopened
' Uses a three-element array: label content,
' PNG file name (set to null), what side (1 = top)
params(0) = "Hello"
params(1) = null
params(2) = 1
theItem.SetDataStore "$ADORNMENT_com.rorohiko.kris.test1$", params ' uses
dataStore

' Add a temporary little label "Hello" in the top left
' corner of a page item 'theItem'
' Label disappears after document is closed and reopened
params(0) = "Hello"
params(1) = null
params(2) = 1
theItem.SetDataStore "$ADORNMENT_com.rorohiko.kris.test1$", params, 1 '
uses tempDataStore

' Next two samples show the labels at the left (side 2)
' and bottom (side 3) of the page item,
' and use a PNG element instead of a string
params(0) = null
params(1) = "myIcon.png"
params(2) = 2
theItem.SetDataStore "$ADORNMENT_com.rorohiko.kris.test1$", params ' uses
dataStore

' Next two samples show the labels at the left (side 2)
' and bottom (side 3) of the page item,
' and use a PNG element instead of a string
params(0) = "Hello"
params(1) = "myBackground.png"
params(2) = 2
theItem.SetDataStore "$ADORNMENT_com.rorohiko.kris.test1$", params, 1 '
uses tempDataStore

