
Active Page Item Developer - Cookbook
(c) 2006-2009 Rorohiko Ltd.
By Kris Coppieters

1. Introduction
The Active Page Item Developer Toolkit is a system for Adobe® InDesign® CS, CS2,CS3
and CS4 which assist the development of JavaScript-based solutions within InDesign.
The purpose of this manual is to show through examples how its features are used. This
manual was last updated for version 1.0.47 of the Active Page Item Developer Toolkit.

2. Getting started
This section of the cookbook explains how to create simple Active Page Items.

The APID ToolAssistant plug-in is part of the Active Page Item Developer Toolkit and
allows individual page items in an InDesign document to become active components.

Any page item can observe itself and/or one or more other page items, and can react to
changes to either itself or the observed items. Active Page Items can also look out for
external events and react to them.

We'll start with very simple examples, and gradually build up towards more complex
examples.

The scripting language used is JavaScript (ExtendScript).

2.1. Reacting to modifications
Make sure the APID ToolAssistant plug-in is properly installed. Create a new, empty
document in InDesign CS, CS2, CS3 or CS4.

Then create a frame of some kind on the first page. Use the Window – Active Page Item
Developer menu item to make the Active Page Item Developer palette visible (if it is not
already visible).

.

Select the frame, and type the text modified in the Event Filter field on the Active Page
Item Developer palette.

This tells the frame that it needs to keep an eye out for modifications to itself and execute
the script that we’ll enter in the larger scrolling text area on the Active Page Item
Developer palette, which is known as the Script or JavaScript field.

Type the following script:
alert(theItem.geometricBounds);

into the Script field exactly as shown.

This one-liner will bring up a dialog with the current item's bounds.

Together, these entries mean: “Tell me when the frame is modified, and when it is, show
me the geometric bounds”.

Make sure you hit the Tab after having typed the word modified so InDesign is notified of
the change; forgetting to hit the Tab key often causes InDesign to ignore whatever you
typed into the palette.

Now each time you move the frame a bit, a dialog should pop up with four floating-point
numbers. Not very useful, no – it just demonstrates some of the basic principles behind
the Active Page Item Developer.

2.2. Observing a subject
Objects can be observing one another. To help with this, we need to have a way to refer to
a particular page item. The Script Label field on the Active Page Items palette allows us
to assign a name to a page item.

The Script Label is often referred to as the Script Tag.

Create a second frame on the page, and while it is still selected, name it exampleBox in its
Script Label field. Hit the Tab key afterwards.

Then select the previous frame again, and change the contents of the Event Filter field
from modified into subjectModified. Make sure to respect upper- and lowercase letters,
and hit the Tab key afterwards.

Finally, enter exampleBox in the List of Subjects field for the first frame, and hit the Tab
key.

This configuration has the following effect: the original frame is now watching out for
modifications in any of its subjects (subjectModified). Right now, it only has one subject –
the exampleBox. If and when the exampleBox is modified, the script on the observing frame
will be called.

Move the exampleBox around a bit. Each time you move the exampleBox, a dialog comes up
with floating point coordinates; click OK to make it go away.

Take note that the displayed coordinates don't change on each move – that's because
theItem in our JavaScript always refers to the page item to which the script is attached.
As long as the original frame is not moved, the geometric bounds shown won't change.

Moving the exampleBox triggers the execution of the script, but the data presented in the
dialog relates to the other frame.

2.3. Referring to a subject
If we want to show the geometric bounds of the exampleBox instead of the observing
frame, we need to change the script a little bit: the eventSource attribute of theItem refers
to the cause of the subjectModified event.

Change the script so it reads:
alert(theItem.eventSource.geometricBounds);

adding the property eventSource after theItem.

If you now move the exampleBox the numbers will be different each time because they
reflect the bounds of the exampleBox.

The eventSource property comes in handy when a single frame is observing multiple
subjects – when one of the subjects causes an event to be caught by the observer, you can
use theItem.eventSource to find out which subject caused the event.

2.4. Copying the fill color
Now, we can easily change the script to copy the fill color of the exampleBox into the
observing frame, instead of bringing up a dialog. Change the script attached to the
observing frame so it reads:
theItem.fillColor = theItem.eventSource.fillColor;

The whole setup is now configured to automatically copy the color of the exampleBox into
the observing frame each time the exampleBox frame changes.

Assign a fill color to the exampleBox; the observer will immediately fill itself with the same
fill color.

2.5. More than one frame can observe
Copy the observing frame, so there are two identical frames, with identical Event Filter
field contents and identical JavaScripts.

Change the exampleBox fill color. Note that both observers change color.

2.6. Script Labels do not need to be unique
Copy the exampleBox, so there are two identical frames, both carrying script label
exampleBox.

Modify the fill color of one and then of the other. Note that both observers react to
changes in both copies of exampleBox.

2.7. Reacting to multiple subjects
Change the script label of the second exampleBox and call it secondExampleBox (do not
forget to press the Tab key afterwards). Change the fill color and note that the observers
now ignore the color change.

Pick one of the observers and change the List of Subjects field to exampleBox,
secondExampleBox (i.e. two subjects).

Now, one of the observers only observes exampleBox. The other observing frame that we
just modified observes both exampleBox as well as secondExampleBox.

Change the color on both example frames and see what happens.

2.8. Using wildcard expressions in subject lists and event filters
The List of Subjects field also accepts wildcard expressions – it allows one or more
wildcard expressions, separated by commas.

Change the observer's List of Subjects field from exampleBox, secondExampleBox to just
*ampleBox (do not forget to press the Tab key after the change). This is a wildcard
expression that matches both exampleBox and secondExampleBox. Note that the setup still
works as before – the wildcard expression ‘captures’ both frames.

Noteworthy is that a List of Subjects field that contains just a * will match any subject –
even subjects that don't have a script label assigned (in other words, it also matches
subjects with an empty script label).

The Event Filter field uses a similar mechanism: one or more desired events or wildcard
expressions for events can be listed, separated by comma's.

The following characters are used for wildcard expressions:
* means 'zero or more characters'.
? means 'exactly one character'.
! means 'not'.

For example:
?*
is a wildcard expression that matches at least one or more characters.

Consequently,
!?*
is a wildcard expression that matches 'not one or more' – in other words it only matches
zero-length (i.e. empty) labels.

This expression !?* is a handy trick to match only empty strings.

2.9. Transmitting instead of observing
The technique demonstrated earlier is called 'observing'. There is an alternate technique
which achieves similar results, and which can be a bit faster when many page items are
involved.

Create a new, empty document. Then create a single frame, and give it the script label

receiver. Do not forget the Tab key.

Use Step and Repeat to create a number of copies.

Create a new frame, and give it the Event Filter modified. You can optionally enter
transmitter in its Script Label field but that is not necessary for the script below to work
– it just makes it easier to refer to the frame when talking about it.

Then give the transmitter frame the following JavaScript:
var theReceivers = theItem.labeledPageItems(“receiver”);
for (var idx = 0; idx < theReceivers.length; idx++)
 {
 theReceivers[idx].fillColor = theItem.fillColor;
 }

In the previous samples, the copying of the color was performed by the observer(s), and
the example frame was a passive component as far as scripting went.

In this sample, the example frame (the transmitter) has become an active component
instead, and the other frames are passive receivers.

The script first asks theItem to provide an array of all frames carrying the script label
receiver. This array will contain references to all the frames we created with Step and
Repeat.

Then the loop copies the color of the transmitter frame into all the slaved receivers.

This approach is faster than the equivalent setup where all the receiver frames have a
script
theItem.fillColor = theItem.eventSource.fillColor;

as well as a List of Subjects field that refers to the transmitter.

3. Editing and managing scripts
Because the palette is quite limited for editing, it is often easier to use an external editor
to edit scripts.

We strongly recommend you use the APIDTemplate document as a starting point for
developing scripted plug-ins – it automates a lot of the set-up necessary for an easy-to-
maintain project. See paragraph 4.3 for more info.

3.1. Copy-Paste
One approach is to type the text into an external editor and then copy-paste the text into
the palette.

3.2. External Scripts
Another approach is to use external files for the scripts, at least during development.

The following example calculates the location of the current document (assuming the
document is not newly created and has been saved at least once), and then expects a
script testscript.js to sit in the same folder.
var theDocument = GetDocument(theItem);
var theScriptFile = File(theDocument.filePath + "/testscript.js");
app.doScript(theScriptFile);

function GetDocument(thePageItem)
 {
 while (thePageItem != undefined && ! (thePageItem instanceof Document))
 {
 thePageItem = thePageItem.parent;
 }
 return thePageItem;
 }

3.3. One big script versus many small scripts
When developing a solution around Active Page Item Developer you can opt to use a host
of small scripts and scatter them all over the document. This approach is usable, but as
the complexity of your solution increases it will become harder and harder to maintain
the collection of scripts.

A second approach is to store (nearly) all scripting material in a single page item (often
referred to as a controller). This controller typically observes a host of other page items,
reacts to events they emit, and reacts to external events.

The controller lists in its event filter all possible event codes it needs to process, including
any custom event codes that will be emitted by other page items through
handleScriptEvent calls. In this example, we expect other page items to use the event
code subroutine1, and the script attached to the controller is something similar to:
switch (theItem.eventCode)
 {
 case "subroutine1":
 alert("Subroutine 1 called");
 break;
 default:
 alert("Unexpected event code");
 break;
 }

Other page items can still have scripts attached to them, but these scripts are normally
trivial and consist typically of just two lines – the first one to fetch a reference to the
controller, the second a call to theController.handleScriptEvent, so further handling of
the event is passed on to the controller, whose big script contains the necessary logic.

This example script first gets hold of the controller via the theItem.labeledPageItems
method. Remember that this method returns an array – so we need to add an index [0] to
actually access the single element of that array (assuming only a single page item in the
whole document will carry the label controller). Then it calls
theController.handleScriptEvent with an event code subroutine1 to activate the relevant
code in the controller script.
theController = theItem.labeledPageItems("controller")[0];
theController.handleScriptEvent("subroutine1");

4. Examples related to the additional PageItem properties
The Active Page Items plug-in adds a number of properties and events (a.k.a. methods) to
page item objects.

Some of the added properties are visible through the Active Page Item Developer palette:
the Script Label field shows the label property, the List of Subjects field shows the
subjectScriptTagList property, the Event Filter field shows the eventFilter property,
and the large text edit field shows the javaScript property.

The Display Error Dialogs checkbox shows the displayErrorDialogs property, and in
InDesign CS2 or above, the Use Debugger checkbox shows the useDebugger property.

The other properties (like dataStore, tempDataStore,...) are only accessible from a
JavaScript.

In this section, we’ll build a few example scripts that demonstrate various techniques for
using the APID ToolAssistant plug-in.

4.1. Adding a context menu to a page item
In this example, we’ll add a context menu to a page item, which allows us to rotate the
page element in increments of 45 degrees.

We’ll start with a simple trial set-up first, and gradually build it up to something useful.

Adding a context menu to a single page item
Create a new page item, and use the Active Page Item Developer palette to attach the
information shown below to it.

Set the script to
if (theItem.eventCode == "loadContextMenu")
{
 var theMenu = new Array();
 theMenu.push(["1/8 turn","rotateCW"]);
 theMenu.push(["-1/8 turn","rotateCCW"]);
 theItem.contextMenu = theMenu;
}
else if (theItem.eventCode == "rotateCW")
{
 theItem.absoluteRotationAngle += 45;
}
else if (theItem.eventCode == "rotateCCW")
{
 theItem.absoluteRotationAngle -= 45;
}

This script processes three possible event codes: loadContextMenu which will be received
when the user right-clicks or control-clicks on a selection of page items. It also processes
two new, non-standard event codes rotateCW and rotateCCW that are to be sent when the
user selects one of the context menus.

When the page item receives a context-click, it will create an array theMenu, which
contains two entries, one for each context menu item.

Each of the entries is itself an array with two strings – the first string is the menu item
text, the second string is the event code that will be emitted when the context menu is
selected.

In this example, the build-up of the menu is spread over a few lines to improve
readability, but you might just as well have written the equivalent code:
…
if (theItem.eventCode == "loadContextMenu")
{
 theItem.contextMenu = [["1/8 turn","rotateCW"],["-1/8 turn","rotateCCW"]];
}
…

When one of the menu items is selected, an event code rotateCW or rotateCCW will be sent,

and the above script will increase or decrease the rotation of the page item by 45 degrees.

Set the event filter to
loadContextMenu, rotateCW, rotateCCW
(don’t forget to use the Tab key).

Neglecting to do this would make the script seem not to work.

Select and context-click the page item to fire off a loadContextMenu event and execute the
script.

Then bring up the context menu (control-click on Macintosh, right-click on Windows) – an
API… menu item should be available, with two sub-menu items 1/8 turn and -1/8 turn.

Adding a context menu to multiple page items
The above example works fine, but it only handles a single page item. Instead, we’d like
to add the same context menu to all page items.

To achieve that goal, we need to make use of a so-called controller.

A controller is a page item that observes the document and provides functionality for the
whole document. The advantage of using a controller is that we don’t need to manually
add scripts and filters to individual page items.

Delete the page item from the previous example. Create a new page item somewhere on
the pasteboard, and give it the script label rotationController. This script label is not
really important, but we add it as a reminder of the function of the page item we’re about
to build.

We put the controller in the pasteboard area because it will most probably not be meant
to appear on the printed result.

Use the Active Page Item Developer palette to add the following script to the controller:
if (theItem.eventCode == "subjectLoadContextMenu")
{
 var theMenu = new Array();
 theMenu.push(["1/8 turn","subjectRotateCW"]);
 theMenu.push(["-1/8 turn","subjectRotateCCW"]);
 theItem.contextMenu = theMenu;
}
else if (theItem.eventCode == "subjectRotateCW")
{
 theItem.eventSource.absoluteRotationAngle += 45;
}
else if (theItem.eventCode == "subjectRotateCCW")
{
 theItem.eventSource.absoluteRotationAngle -= 45;
}

Set the event filter to
subjectLoadContextMenu, subjectRotateCW, subjectRotateCCW

The main differences with the previous example are that the new event codes now all
start with the prefix subject… Furthermore, the rotation now refers to
theItem.eventSource.absoluteRotationAngle instead of theItem.absoluteRotationAngle.

Because the context menu event codes all start with a subject… prefix, they are
automatically associated with all of the page items observed by the rotationController.

The List of Subjects of the rotationController is set to * (an asterisk)- meaning that our
rotationController observes all page items in the document, even those ones without a
script label.

The end result is that any page item will now have two context menu entries. Selecting
one of the menu items on any page item will invoke the script of the rotationController,
with theItem.eventSource set to the page item whose context menu was selected.

4.2. Persistent data
‘Persistent data’ means: data that remains accessible between multiple calls to a script
and/or remains accessible after save-close and re-open of the document.

One issue with ExtendScript is that it is not immediately obvious how to store persistent
data.

A standard, InDesign-provided way of keeping some persistent data associated with an
object is to use the extractLabel/insertLabel methods.

A disadvantage of these two methods is that they only allow you to store and retrieve
string data.

To alleviate some of the limitations, the APID ToolAssistant plug-in implements some
alternate approaches that accomplish similar results.

First of all, the APID ToolAssistant plug-in adds two new properties to page items:
dataStore and tempDataStore.

These are single-value containers that store simple data types like strings, integers,
booleans, or arrays of these simple data types (in the current version, they cannot store
objects composed of these simple data types, only arrays).

The difference between dataStore and tempDataStore is that dataStore is persistent when
the document is save-closed and re-opened, whereas tempDataStore is not saved, and is

reset each time a document is re-opened.

Alternatively, there are also the two methods getDataStore/setDataStore which also use
a string key to store and retrieve simple data types. An empty key (“”) is associated with
the same data storage locations as are accessed through dataStore and tempDataStore.

The following code:
var x = theItem.dataStore;
var y = theItem.tempDataStore;
theItem.dataStore = “xyz”;
theItem.tempDataStore = 123;

is equivalent to:
var x = theItem.getDataStore(“”);
var y = theItem.getDataStore(“”,true);
theItem.setDataStore (“”,“xyz”);
theItem.setDataStore(“”, 123, true);

and also to:
var x = theItem.getDataStore(“”,false);
var y = theItem.getDataStore(“”,true);
theItem.setDataStore (“”,“xyz”,false);
theItem.setDataStore(“”, 123, true);

Automatically positioning elements
The following example uses the persistent data to distinguish between different reasons
for the modified event code. At the same time, it also shows the use of the
labeledPageItems method.

A modified event code can be the result of a user action, or it can be the result of a
scripted action.

Sometimes it is important to distinguish between the two – scripts can get into endless
loops if you are not careful.

For example, you could write a script that reacts to a modified event by repositioning the
page element that caused the event. This repositioning causes another modified event to
be fired, causing another repositioning, etc… ad infinitum.

By carefully using the persistent data stores such loops can be avoided.

Create a new document and create a new page item in the document. Give it the script
label autoLiner, and the event filter created, modified. Attach the following script to the
page item:

switch (theItem.eventCode)
{
 case "created":
 //
 // This page item was just copy-pasted - move it where it should be.
 //
 RepositionElements(theItem,true);
 break;
 default:
 //
 // This page item was modified. Check its storedBounds to find out
 // whether it was
 // - not moved
 // - moved by the user
 // - moved by the script
 // Only when it was moved by the user do we reposition elements
 //
 if (IsMovedByUser(theItem))
 {
 RepositionElements(theItem,false);
 }
 break;
}

function IsMovedByUser(theItem)
{
 //
 // Compare the stored geometric bounds with the real
 // geometric bounds. If they are different, the element
 // has been moved by the user. If the stored bounds
 // are undefined, then we've never been called before on this
 // element, so we also consider this element 'moved'.
 //
 var theStoredBounds = theItem.getDataStore("storedBounds");
 var isMoved = false;
 if (theStoredBounds == undefined)
 {
 isMoved = true;
 }
 else
 {
 isMoved = false;
 var idx = 0;
 //
 // Loop through top, left, bottom, right until difference found
 // or until all four coordinates checked.
 //
 while (idx < 4 && ! isMoved)
 {
 isMoved = theItem.geometricBounds[idx] != theStoredBounds[idx];
 idx++;
 }
 }

 return isMoved;
}

function RepositionElements(theItem,isNewlyCreated)
{
 //
 // Fetch an array with all elements that share the same label
 // as the current item (theItem will also be in this array).
 //
 var relatedElements = theItem.labeledPageItems(theItem.label);
 //
 // We need at least 3 elements before we can do anything useful
 //
 if (relatedElements.length >= 3)
 {
 //
 // Find the two leftmost, topmost items that are not the newly created
 // item itself
 //
 if (isNewlyCreated)
 {
 var topLeftMost = Find2TopLeftMostElements(relatedElements,theItem);
 }
 else
 {
 var topLeftMost = Find2TopLeftMostElements(relatedElements);
 }
 //
 // Iterate through all page items with the same label and align them in a
 // single file with the same space between them.
 //
 RedistributeElements(topLeftMost[0],topLeftMost[1],relatedElements);
 }
}

//
// For 2nd parameter pass "undefined" or omit it when called without a newly
// created item
//
function Find2TopLeftMostElements(theElementArray,theNewlyCreatedItem)
{
 var theFirst = undefined;
 var theSecond = undefined;
 var idx = 0;
 while (idx < theElementArray.length)
 {
 //
 // Ignore the newly created item (if any)
 //
 theItem = theElementArray[idx];
 if (theItem != theNewlyCreatedItem)
 {
 //
 // Keep track of the two leftmost, topmost items
 //
 if (theFirst == undefined)
 {
 theFirst = theItem;
 }
 else if
 (
 // Is the new item more to the left than the first element
 // or is the new item just as much to the left but above the first?
 theFirst.geometricBounds[1] > theItem.geometricBounds[1]
 ||
 (
 theFirst.geometricBounds[1] == theItem.geometricBounds[1]
 &&
 theFirst.geometricBounds[0] >= theItem.geometricBounds[0]
)
)
 {
 //
 // The previous "first" can now be our new second - we
 // have a better "first".
 //
 theSecond = theFirst;
 theFirst = theItem;
 }
 else if (theSecond == undefined)
 {
 theSecond = theItem;
 }
 else if
 (
 // Is the new item more to the left than the second element
 // or is the new item just as much to the left but above the second?
 theSecond.geometricBounds[1] > theItem.geometricBounds[1]
 ||
 (
 theSecond.geometricBounds[1] == theItem.geometricBounds[1]
 &&
 theSecond.geometricBounds[0] >= theItem.geometricBounds[0]
)
)
 {
 theSecond = theItem;
 }
 }
 idx++;
 }

 //
 // Return 2-element array
 //
 return [theFirst, theSecond];
}

function RedistributeElements(theFirst,theSecond,theElementArray)
{
 //
 // Calculate how much distance to leave between consecutive
 // elements by comparing the first two
 //
 var theHStep = theSecond.geometricBounds[1] - theFirst.geometricBounds[1];
 var theVStep = theSecond.geometricBounds[0] - theFirst.geometricBounds[0];

 var theXPos = theFirst.geometricBounds[1];
 var theYPos = theFirst.geometricBounds[0];
 var idx = 0;
 while (idx < theElementArray.length)
 {
 var theItem = theElementArray[idx];
 //
 // Calculate the height for this element (elements might have
 // different heights and/or widths, so we recalculate it for
 // each element)
 //
 var theHeight = theItem.geometricBounds[2] - theItem.geometricBounds[0];
 var theWidth = theItem.geometricBounds[3] - theItem.geometricBounds[1];
 //
 // Check whether we'll really move the element (allow for round-off
 // errors up to 0.001)
 //
 if
 (
 Math.abs(theItem.geometricBounds[0] - theYPos) > 0.001
 ||
 Math.abs(theItem.geometricBounds[1] - theXPos) > 0.001
)
 {
 var theRight = theXPos + theWidth;
 var theBottom = theYPos + theHeight;
 var theNewBounds = [theYPos, theXPos, theBottom, theRight];
 //
 // Register the new bounds so we can detect user movements -
 // this script will be called with an event code "modified", but
 // the modification will be ignored because geometric bounds and stored
 // bounds will be equal.
 //
 theItem.setDataStore("storedBounds",theNewBounds);
 //
 // Move the item to its new position
 //
 theItem.geometricBounds = theNewBounds;
 }
 //
 // Prepare for next element
 //
 theXPos += theHStep;
 theYPos += theVStep;
 idx++;
 }
}

Now use copy-paste to create a copy of the page item, and move this second copy
somewhere close to the first. Then paste a third copy. The script will kick into action and
move the newly created element into the neighborhood of the first two. Paste a few more
times.

Use the mouse to drag the first or second element to another position. As soon as you let
go of the mouse button, the remainder of the elements will reposition itself.

The script handles two event codes: created and modified. When the created event code is
received, we know that the element must be considered ‘moved’ – our script has not ‘seen’
this element before, so we immediately call the routine that repositions the page
elements.

If the event code is modified, we first check whether the element is moved or not, and
whether it was moved by the user.

To differentiate between user movement and script-driven movement, we use a persistent
data entry called storedBounds, which contains a copy of the last known geometricBounds
of the page item - geometricBounds is an array of 4 numerical values – top, left, bottom,
right.

When the script moves elements around, it takes care to make sure storedBounds is equal
to the new geometricBounds prior to the move – so if the script is activated because of a
script-driven movement, the script will know to ignore the movement.

On the other hand, when the user moves an element, the storedBounds will be different
from the geometricBounds and the script will reposition the elements as needed.

The function IsMovedByUser() implements this ‘user-movement’ detection.

The function RepositionElements() uses Find2TopLeftMostElements() to find the two top-
most left-most elements, and passes them to RedistributeElements() to use as examples
for calculating by what distances elements should be spaced horizontally and vertically.

RepositionElements() also is an example of how the labeledPageItems method can be used
to get an array of all elements that carry a particular label.

Find2TopLeftMostElements() is called with 1 or 2 parameters – in the case of the created
event code, we pass the newly created item in the second parameter. In the case of the
modified event code, we pass no second parameter, leaving the theNewlyCreatedItem
parameter undefined.

Play around with sets of three, four, five copies and try to understand the interactions –
for example, grab the third element, drag it to the left of the first two. Think about what
happened. It is not obvious to see, but some interesting reshuffling has taken place…

Remark: keep in mind that, as we’re copy-pasting elements, each element has a copy of
the above script attached to it. If you want to modify the script, you should do that
‘outside’ of InDesign, in a text editor.

To use the modified script, you should first delete all but one of the elements you have
been playing with and then paste the updated script on top of the script of the single
remaining element. Failing to do this would leave you with multiple versions of the script
floating around in various elements, which would cause strange results.

Using a controller
A better approach would be to move the script into a controller which resides somewhere
on the pasteboard.

Delete all but one of the intelligent page items you created while playing with the
previous example.

Move the single remaining page item to the pasteboard area.

We’ll now modify this page item and its script to become a controller.

We relabel the page item from autoLiner to autoLinerController.

We also change the List of Subjects to autoLiner.

Then we change the Event Filter to subjectCreated, subjectModified

We modify the start of the script so it reacts to these event codes instead of to created and
modified.

Furthermore, the script now passes theItem.eventSource to the functions instead of
theItem itself – theItem refers to the controller, theItem.eventSource refers to the newly
created or modified page element.

The modified part of the script now looks like this:
switch (theItem.eventCode)
{
 case "subjectCreated":
 //
 // This page item was just copy-pasted - move it where it should be.
 //
 RepositionElements(theItem.eventSource,true);
 break;
 default:
 //
 // This page item was modified. Check its storedBounds to find out
 // whether it was
 // - not moved
 // - moved by the user
 // - moved by the script
 // Only when it was moved by the user do we reposition elements
 //
 if (IsMovedByUser(theItem.eventSource))
 {
 RepositionElements(theItem.eventSource,false);
 }
 break;
}

… Remainder of script is identical …

All occurrences of theItem have been replaced with theItem.eventSource, and the created
event code has been replaced with subjectCreated.

To test the script you should create a new page item, and change its label to autoLiner.
That makes it a subject of our controller.

Then copy-paste the newly created page item, position the duplicate close to the original,
and paste again – the second duplicate will automatically ‘line up’ with the first two.

The example works pretty much the same as the previous example – but with this set-up
we only have a single copy of the JavaScript residing in the controller instead of having
multiple copies scattered all around the document.

Controlling multiple groups of ‘auto-liners’
Suppose you wanted to create a similar group of ‘auto liners’, say, on a second page – in
that case, you could use a different label, say autoLiner2 so there is no conflict with our
first group which uses the autoLiner label.

Then you could simply add the new label to the List of Subjects for the controller – the
same controller is able to control many groups.

That approach is not perfect yet – each time we want to add a new group – autoLiner3,
autoLiner4,… we have to adjust the List of Subjects of the controller.

This problem is easy to solve – we simply set the List of Subjects to the wildcard
expression autoLiner* instead of just autoLiner.

Now this single controller can observe and manage multiple groups of page items –

simply create a page item with a label that starts with the word autoLiner… and the
controller will start managing the positions of groups of copy-pasted versions of this page
item.

Converting the controller to a scripted plug-in
An additional benefit of the controller-based approach is that it becomes easy to convert
the controller to a plug-in.

To do the conversion, we will use a second controller – create a new page item on the
pasteboard and label it compilerController

Set the List of Subjects to autoLinerController.

Set the Event Filter to selected.

Attach the following script to the compilerController:
if (confirm("Are you sure you want to compile the AutoLiner plug-in?",true,"Compiling controller"))
{
 if (theItem.subjects.length != 1)
 {
 var theErrorMessage = "Cannot compile\n";
 theErrorMessage += "There should be exactly one page item with a label ";
 theErrorMessage += "matching " + theItem.subjectScriptTagList + " in ";
 theErrorMessage += "the document.";
 alert(theErrorMessage);
 }
 else
 {
 //
 // Our single subject is the autoLinerController
 //
 var thePluginSourceItem = theItem.subjects[0];
 //
 // This componentID embeds the following attributes:
 //
 // name of plugin: AutoLiner
 // password: ThePassword123
 // copyright: (c) 2006 Rorohiko Ltd.
 // licensing: free
 // min. plugin version: 1.0.6
 // end-date: -1,-1,-1 (no timeout)
 // num actual days: 0 (not set)
 // num demo days: 0 (not set)
 //
 var theComponentName = "AutoLiner;ThePassword123;(c) 2006 Rorohiko Ltd.;Free";
 var theComponentId = theComponentName + ",1.0.6,-1,-1,-1,0,0";

 //
 // "Lock" both controllers. Because this currently executing script
 // still needs to be able to access the other controller we need to
 // lock it too, with the same componentId.
 //
 // If we did not lock theItem too, it would loose access to
 // thePluginSourceItem as soon as we locked that. By setting the
 // componentId in the proper order we make sure theItem can continue
 // to access thePluginSourceItem’s APID ToolAssistant data.
 //
 theItem.componentId = theComponentId; // Lock compilerController
 thePluginSourceItem.componentId = theComponentId; // Lock autoLinerController

 //
 // Save the locked autoLinerController as a plug-in
 //
 thePluginSourceItem.saveToPlugin("autoLiner");

 //
 // Unlock both controllers. This script is allowed to do that because
 // it is currently locked with the same componentId. This must be done
 // in the reverse order of locking.
 //
 thePluginSourceItem.componentId = "";
 theItem.componentId = "";
 alert("Done");
 }
}

Deselect and then select the compilerController. A dialog should present itself. Click Yes.
This dialog is useful for those cases where you simply want to re-select this page item
without causing a compilation.

A second dialog shows. Click OK.

Go have a look in the InDesign Plug-Ins folder – there should be a new file called
autoLiner.spln – this is your scripted plug-in file.

Now we can go through the same motions as before, but this time without having to
attach any scripts to page items.

Create a new document, and create a new page item. Set the label of this page item to
autoLinerTest (or anything else that starts with autoLiner…)

Copy-paste the new page item. Put the copy close to its original. Paste again. The pasted

item should align itself with the first two.

Note that this last document has no scripting attached to any page item – all we did was
‘mark’ some page items as ‘special’ by giving them a script label that started with
autoLiner… The rest of the functionality is contained in the scripted plugin autoLiner.spln
which resides in your InDesign Plug-Ins folder.

4.3. Using the APIDTemplate
The APIDTemplate document automates a lot of the tedious work of properly setting up a
new APID project.

In this example, we’ll use APIDTemplate to create a new project that adds a menu item
for to the menu bar that allows us to apply a ‘yellow marker’ to a text selection.

Scripted plug-ins are private to documents
To understand the following example better, we need to first stress an important detail.

Each time a document is loaded, the APID ToolAssistant will create a new and separate
instance of the scripted plug-in, specifically for this document.

In other words: each open document has its own private copy of any scripted plug-ins that
are residing in the plug-ins folder.

And if no documents are open, no instances of the scripted plug-in are available – that is
why the menu items created by scripted plug-ins are disabled when no document is open.

Creating the YellowMarker project
First, launch InDesign and open the document APIDTemplate.indd. In this example,
we’ll use InDesign on Mac OS X for generating the screenshots – it’s all very similar on
Windows and on CS, CS2, CS3 or CS4.

If all is well, a dialog should show up:

Fill this dialog with the required values – choose a plug-in name, choose a random
password, and change the copyright string to suit:

Click OK. You now have to select a location to save the project folder. I’ve selected my
Desktop:

Click Choose. Finally, you are presented with a ‘source’ document – this document can be
used to develop/debug/test your source code, and when you’re ready, you can compile your
source code into a scripted plug-in:

The above screen shot is made with InDesign CS3 – other versions would create similar
documents, but with the name like YellowMarkerSourceCS.indd or
YellowMarkerSourceCS2.indd or similar.
In what follows, we’ll refer to YellowMarkerSourceCSx.indd in what follows to signify any
one of the possible file names.
The contents of the source folder on our desktop look similar to this:

There are two files (as well as possibly an InDesign lock file – ignore it). The file
YellowMarker.jsx is used to store our source code. The file YellowMarkerSourceCS.indd
(or YellowMarkerSourceCS2.indd or YellowMarkerSourceCS3.indd or similar) is used to
run/debug/test our source code.

Adding the source code
Let’s first put our source code into the YellowMarker.jsx file. You can use any text editor
– just make sure you save the file as ASCII text (some editors save RTF or Unicode text
without telling you – that won’t work!)

I’ve put the following source code into YellowMarker.jsx – it’s not a complicated script,
and I won’t go into too much detail about it – study it at your leisure.

Do not forget to save. Forgetting to save is the biggest gotcha in this setup – the
YellowMarkerSourceCSx.indd document will run whatever was last saved. If you forget
to save, you’ll be running an older version, and experience some frustration as a result.

//
// YellowMarker.jsx
// This script should be in the same folder as the
// document YellowMarkerSourceCS.indd
// It is automatically called by the
// YellowMarkerController page item.
//

// ******* Main program

if (theItem.eventCode == "menuYellowMarker")
{
 var markerColor = GetMarkerColor();
 Mark(app.selection,markerColor);
}
else if (theItem.eventCode == "docLoaded" || theItem.eventCode == "selected")
{
 app.registerMenuItem("menuYellowMarker","Apply Yellow Marker");
}

// ******* Subroutines

function Mark(theSelection, markerColor)
{
 if (theSelection instanceof Array)
 {
 for (var idx = 0; idx < theSelection.length; idx++)
 {
 Mark(theSelection[idx],markerColor);
 }
 }
else if
 (
 theSelection instanceof Text
 ||
 theSelection instanceof Word
 ||
 theSelection instanceof Paragraph
 ||
 theSelection instanceof TextColumn
)
 {
 theSelection.underline = true;
 theSelection.underlineWeight = theSelection.pointSize;
 theSelection.underlineOffset = -theSelection.descent;
 theSelection.underlineColor = markerColor;
 }
}

function GetMarkerColor()
{
 var markerColor = app.activeDocument.swatches.item("MarkerYellow");
 var theErr;
 try
 {
 var name = markerColor.name;
 }
 catch (theErr)
 {
 markerColor = app.activeDocument.colors.add();
 markerColor.name = "MarkerYellow";

 markerColor.model = ColorModel.process;
 markerColor.space = ColorSpace.cmyk;
 markerColor.colorValue = [0, 0, 100, 0];
 }
 return markerColor;
}

Check the main program and note it expects one of three event codes:
menuYellowMarker, docLoaded, and selected.

docLoaded
First, let’s examine the use of the docLoaded event code. This code will be received by our
scripted plug-in each time a new document is loaded.

What we need to do is to register the new menu item we want to add to the menu bar –
that is achieved by calling the registerMenuItem method. This method accepts two
parameters: a user-defined event code (which must start with the prefix menu…) , and a
text string to show on the menu bar.

Each time the user selects the menu item, an event code menuYellowMarker will be sent
to all page items which are waiting for this event code by means of their event filter
expression. In this case, we’ll only have our single scripted plug-in watch out for this
event code.

Interesting detail: each time you open a new document, a new instance of the scripted
plug-in is created, and its docLoaded handler called. That means that each time we open
a new document, the menu item is (re)-registered.

After launching InDesign, but before the first document is opened, the Apply Yellow
Marker menu item is not visible in the API menu – it only appears after the first
document was created or opened.

The menu item remains there, and will be disabled when no documents are open.

menuYellowMarker
That brings us to processing of the second event code – menuYellowMarker: this is a user-
defined event code, which we’ll process by applying a yellow marker (by means of an
oversized yellow underline) to any selected text.

selected
Finally, there is the event code selected. Its only reason for existence is to help us debug
and test the plug-in.

If we only processed the docLoaded event code, we would have to save/close/re-open our
source document YellowMarkerSourceCSx.indd every time we make a small change and
we want to re-run our script.

Instead, we will process the selected event in the same way as the docLoaded event.

That way we can simply deselect (if necessary) and reselect the proxy page item that
serves as a placeholder for the scripted plug-in in the source document. So instead of

having to close and re-open we can simply click the placeholder frame and have our script
(re-)execute.

Testing the source code
After we’ve saved the source code from the text editor, we switch to InDesign.

First, we need to set up the proper parameters for the scripted plug-in.

This is achieved by manipulating the placeholder page item (also known as ‘the proxy’)
with the Active Page Item palette.

Select the proxy item, and make the Active Page Item palette visible.

Empty the list of subjects, and set the event filter so it captures our three event codes –
menuYellowMarker, docLoaded, and selected.

To run our source code, we can now simply select this proxy page item which represents
our scripted plug-in for the time being.

Because the proxy item is currently selected, we need to deselect it first, and then re-
select – clicking an already selected item has no effect; the selected event is only fired if
the object changes from unselected to being selected.

Now check the menu bar – the API menu item should contain a new menu item:

Create a text frame in YellowMarkerSourceCS.indd and type some text in it. Select some
of the words, and then select the new menu item.

Enabling and disabling the menu item
The new menu item still has a small problem: it remains enabled at all times, even when
there is no text currently selected.

We can easily solve that by adding some extra source code to handle the predefined
enableMenus event.

In this case, we only have to worry about a single menu item, but when you write a more
complex scripted plug-in which manages multiple menu items, you will probably also
need to take into account the eventData property. If the eventCode is enableMenus the
corresponding eventData will contain the menu item’s event code.

By checking theItem.eventData you can know which menu item needs to be tested for
enable/disable.

We now modify the YellowMarker.jsx so it also processes the enableMenus event.

We also must add the enableMenus event to the event filter of the proxy object.

The source code is extended a little bit:

. . . <snip> . . .
// ******* Main program

if (theItem.eventCode == "enableMenus")
{
 //
 // Return desired menu state via our tempDataStore property
 //
 theItem.tempDataStore = HaveSomeTextSelected(app.selection);
}
else if (theItem.eventCode == "menuYellowMarker")
{
 var markerColor = GetMarkerColor();
 Mark(app.selection,markerColor);
}
. . . <snip> . . .
// ******* Subroutines

function HaveSomeTextSelected(theSelection)
{
 var textSelected = false;
 if (theSelection instanceof Array)
 {
 var idx = 0;
 while (! textSelected && idx < theSelection.length)
 {
 textSelected = HaveSomeTextSelected(theSelection[idx]);
 idx++;
 }
 }
else if
 (
 theSelection instanceof Text
 ||
 theSelection instanceof Word
 ||
 theSelection instanceof Paragraph
 ||
 theSelection instanceof TextColumn
)
 {
 textSelected = true;
 }

 return textSelected;
}
. . . <snip> . . .

Don’t forget to save the modified script from your text editor!

To handle menu enabling or disabling we must handle the enableMenus event code, and
return a boolean true or false value via the property tempDataStore of our item (no, using
return does not work).

After this modification, we should see proper disabling/enabling of the menu item.

Be careful with the handling of enableMenus – your code should be as fast and efficient as
possible, and should not take more than a fraction of a second to execute.

Compiling the scripted plug-in
After verifying everything works as expected, we are ready to compile the scripted plug-
in.

First, inspect the source code attached to the compilation controller page item – it starts
with a list of customizable parameters. Customize this section as desired. Shown below is
an older version – as APIDTemplate evolves over time this code tends to change. For
example, we could change areas marked in cyan from this:

//
// **** CONFIGURATION ****
//
kScriptName = "YellowMarker"
kCompiledPassword = "yoyo";
kCopyright = "(c) 2007 Rorohiko Ltd.";
kSPLNVersion = "1.0";

// Compact scripted plug-in code. Use with care - if it breaks your plug-in,
// then keep this set to false.
kCompressWhenCompile = (theItem.eventCode != "buttonPushDebug");

//
// The code below defaults the min version number to the version
// you are currently using. Can be changed to an explicit version
// number if desired (e.g. kMinAPIVersion = "1.0.23";)
//
kMinAPIVersion = theItem.getDataStore("$VERSION$").split(".",3).join(".");

// ***** LICENSING INFO BEGIN *****

//
// If you want to use the licensing system, you must adjust the constants below
// kIsFree must be set to false, and the other constants adjusted
//
// There are three demo timeout modes - you can use one, two or all three at the
// same time. You MUST select at least one mode when setting kIsFree to false.
// When using multiple modes concurrently: the first mode that times out causes the
// plug-in to lapse.
//
// Mode 1: interval. From the day of the first use, the demo can be used for
// kMinDemoDays consecutive days.
//
// Mode 2: actual use days. Days of actual use are counted. These days are
// not necessarily consecutive - so 5 non-consecutive days can for example
// spread over 5 weeks or more.
//
// Mode 3: hard cut-off date. The demo can be used up to a hard-coded
// cut off date.
//
//

kIsFree = true;

//
// Length of demo interval from first day of use. Can be -1
//
kMinDemoDays = 30;

//
// Minimum of (non-consecutive) actual use days - e.g. if the user starts the demo
once
// on a particular date, then does not use it for six months, and then tries
// again, he will still be allowed to use it for another 19 days.
//
kMinActualUseDemoDays = 20;

//
// "Hard" cutoff date for demo mode - unlicensed plug-in will stop
// working after this date, independent of minDemoDays and minActualUseDemoDays
// -1,-1,-1 if no cutoff needed

//
kDemoEndYear = -1;
kDemoEndMonth = -1;
kDemoEndDay = -1;

//
// If kLicenseURL is empty, the "Get License..." button will be disabled.
//
// ^1 will be replaced by the InDesign serial number (first 20 characters
// of the 24-character activation code).
// ^2 will be replaced by a URL encoded form of the plug-in name
// ^3 will be replaced by a unique system identifier (format xx:xx:xx:xx:xx:xx)
// ^4 will be replaced by a 'R', 'D', or 'E' to indicate the current API license
// already installed
// 'R' means no license installed - only APIR is licensed on this computer
// (because it is free)
// 'D' means APID is already licensed on this computer
// 'E' means an APIE license is installed (which encompasses APID as well)
...

kLicenseURL = "";

//
// if kLicenseMessage is empty (""), the "beg window" on startup will be disabled.
//
// In the two messages below:
// ^1 will be replaced by the plugin name.
// ^2 will be replaced by the number of demo days remaining
//
kLicenseMessage =
 "You are currently using a demo version of ^1," +
 " which will disable itself in ^2 days.";

//
// if kTimedOutMessage is empty (""), the "beg window" on time out will be disabled.
//
kTimedOutMessage =
 "A lapsed demo version of ^1 is installed.";

// ***** LICENSING INFO END *****
into the areas marked in yellow, like this:

//
// **** CONFIGURATION ****
//
kScriptName = "YellowMarker"
kCompiledPassword = "yoyo";
kCopyright = "(c) 2007 Rorohiko Ltd.";
kSPLNVersion = "1.0";

// Compact scripted plug-in code. Use with care - if it breaks your plug-in,
// then keep this set to false.
kCompressWhenCompile = (theItem.eventCode != "buttonPushDebug");

//
// The code below defaults the min version number to the version
// you are currently using. Can be changed to an explicit version
// number if desired (e.g. kMinAPIVersion = "1.0.23";)
//
kMinAPIVersion = theItem.getDataStore("$VERSION$").split(".",3).join(".");

// ***** LICENSING INFO BEGIN *****

//
// If you want to use the licensing system, you must adjust the constants below
// kIsFree must be set to false, and the other constants adjusted
//
// There are three demo timeout modes - you can use one, two or all three at the
// same time. You MUST select at least one mode when setting kIsFree to false.
// When using multiple modes concurrently: the first mode that times out causes the
// plug-in to lapse.
//
// Mode 1: interval. From the day of the first use, the demo can be used for
// kMinDemoDays consecutive days.
//
// Mode 2: actual use days. Days of actual use are counted. These days are
// not necessarily consecutive - so 5 non-consecutive days can for example
// spread over 5 weeks or more.
//
// Mode 3: hard cut-off date. The demo can be used up to a hard-coded
// cut off date.
//
//
kIsFree = false;

//
// Length of demo interval from first day of use. Can be -1
//
kMinDemoDays = 10;

//
// Minimum of (non-consecutive) actual use days - e.g. if the user starts the demo
once
// on a particular date, then does not use it for six months, and then tries
// again, he will still be allowed to use it for another 19 days.
//
kMinActualUseDemoDays = 10;

//
// "Hard" cutoff date for demo mode - unlicensed plug-in will stop
// working after this date, independent of minDemoDays and minActualUseDemoDays
// -1,-1,-1 if no cutoff needed
//

kDemoEndYear = -1;
kDemoEndMonth = -1;
kDemoEndDay = -1;

//
// If kLicenseURL is empty, the "Get License..." button will be disabled.
//
// ^1 will be replaced by the InDesign serial number (first 20 characters
// of the 24-character activation code).
// ^2 will be replaced by a URL encoded form of the plug-in name
// ^3 will be replaced by a unique system identifier (format xx:xx:xx:xx:xx:xx)
// ^4 will be replaced by a 'R', 'D', or 'E' to indicate the current API license
// already installed
// 'R' means no license installed - only APIR is licensed on this computer
// (because it is free)
// 'D' means APID is already licensed on this computer
// 'E' means an APIE license is installed (which encompasses APID as well)
...

kLicenseURL = "http://www.rorohiko.com/buyourstuff?ID=^1&PI=^2&SI=^3&LL=^4";

//
// if kLicenseMessage is empty (""), the "beg window" on startup will be disabled.
//
// In the two messages below:
// ^1 will be replaced by the plugin name.
// ^2 will be replaced by the number of demo days remaining
//
kLicenseMessage =
 "You are currently using a demo version of ^1," +
 " which will disable itself in ^2 days.";

//
// if kTimedOutMessage is empty (""), the "beg window" on time out will be
disabled.
//
kTimedOutMessage =
 "A lapsed demo version of ^1 is installed.";

// ***** LICENSING INFO END *****

This sets our compiled plug-in up to be compressed, non-free, with a demo period of 10
days.

If the user wants to purchase the plug-in he’ll be redirected to the URL
http://www.rorohiko.com/buyourstuff, and pass the InDesign serial number, the plug-in
name, the system id and the current API license level as URL parameters called ‘ID’, ‘PI’,
‘SI’, and ‘LL’.

Switch back to InDesign and select the release compilation ‘button’:

Click Yes to compile the plug-in. From this moment on, you have to be careful when
manipulating the YellowMarkerSourceCSx.indd document.

Because of the compilation, there can now be two duplicates of our YellowMarker plug-in
active concurrently. One is contained in the proxy object, the other originates from the
newly compiled scripted plug-in.

When you open the YellowMarkerSourceCSx.indd at a later point in time with the
YellowMarker.spln installed, you will have two copies of the YellowMarker fighting for
attention.

Close the YellowMarkerSourceCSx.indd and then open or create another document and
verify the scripted plug-in is active. First you’ll be presented with the ‘begging’ dialog
which contains the data that was specified in the licensing area of the the compilation
controller page item script:

Click past the dialog, and test the yellow marker function:

Deployment
Your plug-in is now ready for deployment: you can put the YellowMarker.spln file from
your plug-ins folder on your web site.

Your customers will be able to try your scripted plug-in out for 10 days, after which the
plug-in becomes inactive.

Your customers will have to install a copy of the APID ToolAssistant, a demo of which can
be downloaded from our web site:
http://www.rorohiko.com/apidtoolassistant.html

The APID ToolAssistant we have available for download on our web site is a demo
version, allowing your customer to try things out for about a month.

For continued use your customer will have to purchase a license for the APID
ToolAssistant from us (Rorohiko Ltd.) – directly or indirectly – one license for each
installed copy of InDesign used by the customer.

If the customer has, for example, both InDesign CS and CS2 installed, and wants to use
both, two licenses are needed. If the user has a laptop and a desktop with the same serial
number, two licenses to APID ToolAssistant will be needed.

Even if the customer uses multiple scripted plug-ins, the customer needs to purchase the
APID ToolAssistant only once per installed copy of InDesign – i.e. multiple separate plug-
ins that were all created using APID Toolkit can all be used with the customers’ single
installed and licensed copy of APID ToolAssistant.

Independently from the license for APID ToolAssistant, your customer will need to get a
license for YellowMarker.spln from you.

It is up to you to decide how to handle this deployment – for example, you could pre-
purchase single copies of APID ToolAssistant from us and bundle them with your plug-in
– simply adding the cost of APID ToolAssistant to your selling price, or alternatively, you

could direct your customer to our web site to purchase APID ToolAssistant directly from
us. A third option is available for APID 1.0.44 and higher: for approved component ids
you can provide your customer with a combined license file that includes both the license
for APID and the license for your tool.

You’re also allowed to bundle the demo version of APID ToolAssistant with your demo
version of your plug-in.

When a customer needs a license of your plug-in, you will need to use the
APIDLicenseGenerator command line tool to generate a license file, or for approved
components, you’ll have to contact Rorohiko to get a proper license file.

This license file is generated based on the serial number of your customers’ copy of
InDesign, combined with the plug-in name (YellowMarker), and the system id.

The APIDTemplate used to compile your plug-in has a text frame on the right of page 1
which shows examples of the command lines to use after compiling your plug-in.

The license-generation process can be automated fairly easily, if so desired, via a web site
– the ‘Get License…’ button on the beg-screens can be configured fire off a URL that
contains the needed information for automatically generating a license file on the web
server.

4.4. Opening up your plug-in to external scripts
At some point in time, you might be interested in allowing some access to the functions of
your scripted plug-in to other script developers.

By default, their access is limited: compiling the plug-in pretty much closes it off for any
direct scripted access.

For example, it is not possible to simply send events to a compiled plug-in using the
handleScriptEvent method – these calls are ignored for objects with compiled JavaScripts
attached.

However, you can selectively open up access by defining some user-defined event codes
that start with the prefix external…

This prefix gets special treatment, and any events with this prefix that are sent to a
compiled component will be allowed through.

As an example, we’ll extend the YellowMarker.spln example from section 4.3 so it accepts
events from ‘outside’ and then we’ll show how to use some example AppleScript and
JavaScript to automate the YellowMarker.spln.

The change to the YellowMarker source code is minor: we simply add a new user-defined
event externalYellowMarker which performs the exact same function as
menuYellowMarker.

Because this new event starts with external… we will be able to send it to the scripted
plug-in from the outside. First, add the new event code to the YellowMarker.jsx source
file:

// ******* Main program

if (theItem.eventCode == "enableMenus")
{
 //
 // Return desired menu state via our tempDataStore property
 //
 theItem.tempDataStore = HaveSomeTextSelected(app.selection);
}
else if (theItem.eventCode == "menuYellowMarker" ||
 theItem.eventCode == “externalYellowMarker”)
{

We also need to change our proxy object in the YellowMarkerSourceCSx.indd. We could
simply add externalYellowMarker to the list of events in the event filter; in this example,
we’ve chosen to instead change the string menuYellowMarker into *YellowMarker which
is a wild-card expression that will match any event that ends in …YellowMarker.

Recompile the plug-in, and close YellowMarkerSourceCSx.indd.

If you are using a Macintosh to work through this cookbook, you can fire up the Script
Editor (in Applications/AppleScript) and type the following script (modify the application
name accordingly if you are using CS, CS2 or CS4 instead of CS3):

tell application "Adobe InDesign CS3"
 set theDocument to active document
 tell theDocument
 set yellowMarkerPluginList to loaded scripted plugins label "yellowmarker"
 set yellowMarkerPlugin to item 1 of yellowMarkerPluginList
 tell yellowMarkerPlugin
 handle script event code "externalYellowMarker"
 end tell
 end tell

end tell

Open a new document, create a text frame and type some text in it. Select some of the
text. Switch back to the Script Editor and run the script. The selected text in InDesign
should become yellow-marked.

Note that the scripted plug-in label is in lowercase: when a scripted plug-in is loaded by a
document, the label used will be its file name converted to lower case.

The same can be achieved with a JavaScript. Create a JavaScript source file
TestYellow.js which contains:
var theDoc = app.activeDocument;
var yellowMarkerPluginList = theDoc.loadedScriptedPlugins("yellowmarker");
var yellowMarkerPlugin = yellowMarkerPluginList[0];
yellowMarkerPlugin.handleScriptEvent("externalYellowMarker");

Go to your InDesign application folder, and navigate into the Presets subfolder and then
into the Scripts folder. Save the TestYellow.js file there.

Open a new document, create a text frame and type some text in it. Select some of the
text. Bring up the Scripts Palette and double-click the TestYellow.js entry.

Again, note the label of the scripted plug-in: it’s all lowercase. It is the same as the
filename of the scripted plug-in, with the .spln extension stripped off and converted to
lower case.

The same results can also be achieved with VBScript.

4.5. Hybrid JavaScript/C++
This is an advanced subject – if you don’t have any experience with the InDesign SDK,
you’ll have to accept that some of the things discussed here won’t make much sense. But
if you don’t know what this is about, don’t worry – you probably don’t need it.

Where speed is an issue, one can easily mix and match JavaScript with some C++ code.

The easiest way to access C++ code from any APID-based ExtendScripts is by adding a
new interface to some of the page item boss class(es), or to the ScriptedPlugin boss class.

The interface you’ll be adding corresponds to the following abstract C++ class (stored in
the file IActivePageItemExtension.h):

#ifndef __IActivePageItemExtension_h__
#define __IActivePageItemExtension_h__

#include "ScriptData.h"
#include "ActivePageItemExtensionID.h"

///
/// Interface to a C++ extension aggregated onto a page item
///

class IActivePageItemExtension : public IPMUnknown
 {
public:
 enum {kDefaultIID = IID_IACTIVEPAGEITEMEXTENSION};

 virtual ErrorCode
 CallExtension(
 ScriptData& returnData,
 const ScriptData& par1 = ScriptData(),
 const ScriptData& par2 = ScriptData(),
 const ScriptData& par3 = ScriptData(),
 const ScriptData& par4 = ScriptData(),
 const ScriptData& par5 = ScriptData()) = 0;
 };

#endif // __IActivePageItemExtension_h__

This interface is a one-to-one mapping onto the callExtension JavaScript method which
is provided by the APID plug-in.

Attached to this interface you also need to add a corresponding implementation which
will contains the C++ code you’ll be calling from JavaScript.

In the APID Toolkit example files, you’ll find two example projects with associated
CodeWarrior or Xcode (Mac) and Visual Studio (Windows) project files which can serve as
a starter for your own projects.

An important detail: you might need to aggregate the IActivePageItemExtension interface
on kPageItemBoss as well as on kActivePageItemScriptedPluginBoss.

Before your scripted plug-in is compiled, you could be using a proxy object, which is a
placeholder plage item, hence represented by a kPageItemBoss.

After compiling (depending on how you’ve set things up), your proxy object would possibly
become a scripted plugin object instead, which is represented by a
kActivePageItemScriptedPluginBoss instead.

However, it is also perfectly possible that you only need the interface on kPageItemBoss –
you might decide to call the callExtension method only on page items.

5. How-to examples

5.1. Locking InDesign during idle processing
Sometimes, you have a situation where you’d like to do some processing during idle time.
Yet, at the same time, you’d prefer the user to be locked out of the user-interface until the
processing is finished.

Active Page Items has some functionality which is accessible via the ‘callExtension’ event
of the Application object.

The three relevant features are: SetApplicationModalLock (opcode 10001), and
ClearApplicationModalLock (opcode 10002), and IsApplicationModalLocked (opcode 10003).

Calling app.callExtension(0x90b6c,10001) will lock InDesign into a modal mode; the call
app.callExtension(0x90b6c,10002) will release the modal lock.

Calling app.callExtension(0x90b6C,10003) returns a Boolean that tells you whether
InDesign is currently modally locked.

Attach the following event handler script to any page item, and set the page item’s event
filter to selected.
if (theItem.eventFilter == "selected")
{
 theItem.eventFilter = "selected,idle";
 theItem.dataStore = 0;
 app.callExtension(0x90b6C,10001);
}
else
{
 if (theItem.dataStore > 10)
 {
 theItem.eventFilter = "selected";
 app.callExtension(0x90b6C,10002);
 }
 else
 {
 theItem.dataStore = theItem.dataStore + 1;
 }
}

When the page item is clicked, its handler will first change the event filter to be
selected,idle. Then, each time the idle event is received, it will add one to
theItem.dataStore, until, after about 11 seconds, theItem.dataStore reaches 11, at which
time the event filter is set back to selected.

During this 11-second idle time, the application will be locked in modal mode – making
sure the user cannot change anything via the user interface.

This locking mechanism is especially useful when calling out to external applications:
while the external application is processing, we often don’t want the user to ‘fiddle
around’ with InDesign.

By using these functions we can be sure that InDesign is locked against user interactions
while the external application executes.

5.2. Concurrently capturing page items with multiple controllers
A simple trick to include or exclude certain page items from processing by a particular
controller is to use the page item’s script label and change it on-the-fly to some particular
string which is matched or not matched by an observer’s subject list.

If you want to avoid having to re-type the code below, look in the example documents that
accompany the APID download for autoSquareAutoShadeCS.indd.

A script-label activated controlled
An example: create a new document, and create a frame on the pasteboard – this frame
will become our new controller.

Bring up the Active Page Item Developer palette, select the frame, and set the List of
Subjects to autoSquare, and the Event Filter to subjectModified.

Insert the following script:
var theSubject = theItem.eventSource;
var theHeight = theSubject.geometricBounds[2] - theSubject.geometricBounds[0];
var theWidth = theSubject.geometricBounds[3] – theSubject.geometricBounds[1];
if (theWidth != theHeight)
{
 theSubject.geometricBounds =
 [
 theSubject.geometricBounds[0],
 theSubject.geometricBounds[1],
 theSubject.geometricBounds[0] + theWidth,
 theSubject.geometricBounds[3]
];
}

It should look roughly like this:

}

Now create a frame somewhere on the page, and set its script label to autoSquaring. Try
resizing this frame. Because of its label, it is a subject of the controller, and the controller
will force the frame to become and remain a square.

Make a few copies of the frame, all carrying the same script label – all these frames
exhibit the same ‘stay square’ behavior.

To stop the behavior for a particular frame, you can clear the script label.

This is a good trick, but it falls apart when there is more than one controller and more
than one behavior.

Adding a second script-label activated controller
To demonstrate the issue, create a second frame on the pasteboard, and select it. Set the
List of Subjects to autoShade, and the Event Filter to subjectModified.

Insert the following script:
//
// Maximum drop shadow distance
//
const kDropShadowMaxPoints = 20;

// do {} while (false); construct: if precondition fails,
// bail out with "break;"
do
{
 theSubject = theItem.eventSource;

 thePage = GetParentPage(theSubject);

 // Bail out if no parent page
 if (thePage == null)
 break;

 theDocument = GetParentDocument(thePage);

 // Bail out if no parent document
 if (theDocument == null)
 break;

 //
 // Switch the document measurements to points. Keep the original measurements
 // so we can restore them later
 //
 var savedHorizontalMeasurementUnits =
 theDocument.viewPreferences.horizontalMeasurementUnits;
 var savedVerticalMeasurementUnits =
 theDocument.viewPreferences.verticalMeasurementUnits;
 theDocument.viewPreferences.horizontalMeasurementUnits = MeasurementUnits.points;
 theDocument.viewPreferences.verticalMeasurementUnits = MeasurementUnits.points;

 //
 // Calculate some parent page attributes
 //
 var pageTopLeftX = thePage.bounds[1];
 var pageTopLeftY = thePage.bounds[0];
 var pageWidth = thePage.bounds[3] - pageTopLeftX;
 var pageHeight = thePage.bounds[2] - pageTopLeftY;

 var pageCenterX = pageTopLeftX + pageWidth / 2.0;
 var pageCenterY = pageTopLeftY + pageHeight / 2.0;

 //
 // Calculate similar attributes for the frame to be handled
 //
 var subjectTopLeftX = theSubject.geometricBounds[1];
 var subjectTopLeftY = theSubject.geometricBounds[0];
 var subjectWidth = theSubject.geometricBounds[3] - subjectTopLeftX;
 var subjectHeight = theSubject.geometricBounds[2] - subjectTopLeftY;

 var subjectCenterX = subjectTopLeftX + subjectWidth / 2.0;
 var subjectCenterY = subjectTopLeftY + subjectHeight / 2.0;

 //
 // How far from the page center is the frame?
 //
 var subjectRelativeDistanceX = (subjectCenterX - pageCenterX) / pageWidth;
 var subjectRelativeDistanceY = (subjectCenterY - pageCenterY) / pageHeight;

 //
 // The further away from the page center, the more pronounced
 // the drop shadow will be
 //
 var dropShadowDeltaX = subjectRelativeDistanceX * kDropShadowMaxPoints;
 var dropShadowDeltaY = subjectRelativeDistanceY * kDropShadowMaxPoints;

 //
 // Apply drop shadow. Different code needed for CS/CS2 (versions 3.0 and 4.0)
 // and CS3 (version 5.0)
 // Also take care not to cause an endless "subjectModified" event loop:
 // we only adjust the drop shadow parameters if they are not correct yet
 //
 if (parseFloat(app.version) < 5.0)
 {
 if (theSubject.shadowMode != ShadowMode.drop)
 theSubject.shadowMode = ShadowMode.drop;

 if (theSubject.shadowXOffset != dropShadowDeltaX)
 theSubject.shadowXOffset = dropShadowDeltaX;

 if (theSubject.shadowYOffset != dropShadowDeltaY)
 theSubject.shadowYOffset = dropShadowDeltaY;
 }
 else
 {
 if (theSubject.transparencySettings.dropShadowSettings.mode != ShadowMode.drop)
 theSubject.transparencySettings.dropShadowSettings.mode = ShadowMode.drop;

 if
(theSubject.transparencySettings.dropShadowSettings.xOffset != dropShadowDeltaX)
 theSubject.transparencySettings.dropShadowSettings.xOffset =
 dropShadowDeltaX;

 if
(theSubject.transparencySettings.dropShadowSettings.yOffset != dropShadowDeltaY)
 theSubject.transparencySettings.dropShadowSettings.yOffset =
 dropShadowDeltaY;
 }

 //
 // Restore the measurements to what they were
 //
 theDocument.viewPreferences.horizontalMeasurementUnits =
 savedHorizontalMeasurementUnits;
 theDocument.viewPreferences.verticalMeasurementUnits =
 savedVerticalMeasurementUnits;
}
while (false);

// End of event handler; utility functions below

function GetParentPage(pageItem)
{
 var page = null;
 do
 {
 var err;
 try
 {
 page = pageItem.parent;
 }
 catch(err)
 {
 page = null;
 }

 if (page == null)
 {
 break;
 }

 if (page instanceof Page)
 {
 break;
 }

 if (page == pageItem)
 {
 page = null;
 break;
 }

 pageItem = page;
 }
 while (true);

 return page;
}

function GetParentDocument(pageItem)
{
 var document = null;
 do
 {
 var err;
 try
 {
 document = pageItem.parent;
 }
 catch(err)

 {
 document = null;
 }

 if (document == null)
 {
 break;
 }

 if (document instanceof Document)
 {
 break;
 }

 if (document == pageItem)
 {
 document = null;
 break;
 }

 pageItem = document;
 }
 while (true);

 return document;
}
This script will influence any page items that have a script label set to autoShade, and it
will apply a more or less pronounced drop shadow depending on how far removed they
are from the page center. Try it out to get a feel for what it does.

The problem: suppose we’d love to get both behaviors grafted onto a page item: we want
both autoSquaring and autoShade. Because both controllers use the script label to ‘pick’
their subject we seem to be caught in an either/or situation.

Wildcard characters to the rescue: the trick is to change the expression in the List of
Subjects for both controllers. Change the List of Subjects on the first controller to
autoSquaring and the List of Subjects on the second controller to *autoShade*. Now set
the script label on one of your test frames to autoSquaringautoShade (simply
concatenating the two script labels) and suddenly this particular frame will get both
behaviors at the same time.

Avoiding false positives
There are still some issues with the above approach: depending on the script labels
selected, we might accidentally get some false positives because of a possible unfortunate
concatenation of the script labels.

To avoid this, the easiest is to use some special characters (for example < and >) to ‘wrap’
the script labels: the List of Subjects on both controllers become *<autoSquaring>* and
<autoShade>, and we set the script label on the test frames to
<autoSquaring><autoShade>.

Because of the mingled-in non-letters we avoid false positives.

For example, if the labels we picked would have been active and reactive, the label
reactive would match both a List of Subjects set to *reactive* and one set to

active,the second one being a false positive.

Using <active> and <reactive> instead, and *<active>* and *<reactive>* in the lists of
subjects avoids the false positive.

5.3. Clearing the undo stack in InDesign CS3
The functionality described below can only be used from ‘regular’ scripts; it does not work
from an APID event handler.

Suppose you’re running a lengthy script in CS3 that performs large amounts of undoable
operations (e.g. dynamically building complex table layouts).

As a result, InDesign will build up a massive undo stack, which eventually will start
slowing down things.

By regularly calling the following lines inside some of your script loops, you can clear the
undo stack, which often leads to a marked performance improvement.
function DiscardUndoStack(theDocument)
{
 const IID_IACTIVEPAGEITEMSCRIPTUTILITIESEXTENSION = 0x90B6C;
 const kOpCode_DiscardUndo = 10006;

 app.callExtension(
 IID_IACTIVEPAGEITEMSCRIPTUTILITIESEXTENSION,
 kOpCode_DiscardUndo,
 theDocument);
}
You should call this function fairly often during processing.

How often is often enough? That depends on a lot of things; you probably don’t want to
call this function inside your innermost loops, as that might become counterproductive
because of the functions overhead.

As a rule of thumb, when we use this function, we try to call it roughly after about 30
undoable operations. The ‘sweet spot’ for your script might be different – it pays to run a
few tests and measure times.

5.4. Adding context menus to a text selection
From APID 1.0.43 onwards, you can also attach contextual menus to text selections.

The following example adds two context menu items to all frames in a document, and a
third context menu item that will be used for text selections.

Create a frame on the pasteboard, set the List of Subjects to * (i.e. all page items), and
the Event Filter to subjectLoadContextMenu, subjectRotateCW, subjectRotateCCW,
subjectCapitals.

Set the script of the controller frame to:
if (theItem.eventCode == "subjectLoadContextMenu")
{
 var theMenu = new Array();
 theMenu.push(["1/8 turn","subjectRotateCW"]);
 theMenu.push(["-1/8 turn","subjectRotateCCW",false]);

 if
 (
 app.selection instanceof Array
 &&
 app.selection.length == 1
 &&
 app.selection[0] instanceof Text
)
 {
 theMenu.push(["All Caps","subjectCapitals",true]);
 }
 theItem.contextMenu = theMenu;
}
else if (theItem.eventCode == "subjectRotateCW")
{
 theItem.eventSource.absoluteRotationAngle += 45;
}
else if (theItem.eventCode == "subjectRotateCCW")
{
 theItem.eventSource.absoluteRotationAngle -= 45;
}
else if (theItem.eventCode == "subjectCapitals")
{
 app.selection[0].capitalization = Capitalization.allCaps;
}
Now create a text frame on the page, and insert some text into it. Use the normal
selection tool to select the text frame, and right click it – there should be an API menu
with two entries (1/8 turn and -1/8 turn).

Now switch to text selection mode and select some text in the frame, and then right-click
the selected text. Now there should be an API menu with a single entry All Caps.

Each menu item in the context menu corresponds to a 3-item array (but the third item is
optional, and if omitted is assumed to be false).

If the third item in the menu item’s entry is false, then it is a ‘normal’ context menu that
shows up in regular selection mode. If the third item in a menu item’s entry is true, then
the context menu will only appear in text selection mode.

Keep in mind that context menus are rebuilt on-the-fly. This example includes code that
checks whether there is a usable text selection available before adding the third menu
item. If you right-click in text selection mode without some text selected, then the third
item won’t appear.

5.5. Using your own menu entry instead of the ʻAPIʼ menu.
APID normally uses simple strings for menu items and context menu items, and these
strings appear in InDesign under a menu item ‘API’.

However, you can also use a different menu item instead of this default ‘API’ menu item.

Internally, InDesign uses so-called ‘menu paths’ composed of multiple colon-separated
strings to represent the location of a menu item. For example, the standard InDesign
preferences menu path is Main:&Edit:Preferences.

To insert a new entry into the standard InDesign preferences menu you could use a menu
item called Main:&Edit:Preferences:My Own Preferences instead of simply Preferences.

Normal menu items are all somewhere ‘below’ the Main:… root menu path entry.

Context menu items are somewhat different: they are either below a root entry called
RtMouseLayout (for normal model context menus) or below a root entry called RtMouseText
(for text selection context menus).

We will use the previous example to demonstrate how this works. Change the script in
the previous example as follows:
if (theItem.eventCode == "subjectLoadContextMenu")
{
 var theMenu = new Array();
 theMenu.push(["RtMouseLayout:My Very Own Menu:1/8 turn","subjectRotateCW"]);
 theMenu.push(
 ["RtMouseLayout:My Very Own Menu:-1/8 turn","subjectRotateCCW",false]);
 if
 (
 app.selection instanceof Array
 &&
 app.selection.length == 1
 &&
 app.selection[0] instanceof Text
)
 {
 theMenu.push(["RtMouseText:My Very Own Menu:All Caps","subjectCapitals",true]);
 }
 theItem.contextMenu = theMenu;
}
else if (theItem.eventCode == "subjectRotateCW")
{
 theItem.eventSource.absoluteRotationAngle += 45;
}
else if (theItem.eventCode == "subjectRotateCCW")
{
 theItem.eventSource.absoluteRotationAngle -= 45;
}
else if (theItem.eventCode == "subjectCapitals")
{
 app.selection[0].capitalization = Capitalization.allCaps;
}
This creates a new menu entry in the context menus called My Very Own Menu and it
inserts the new menu items there instead of under the generic API heading that is used
by default.

It is also possible to ‘nest’ multiple levels of menu items to create submenus and sub-
submenus.

Remark: using submenus does not work properly for context menus in InDesign CS and
CS2 – in those versions, the ‘intermediate’ menu levels are ignored. This is due to
limitations of those versions. In InDesign CS3, things works fine.

5.6. Processing events with a non-default scripting engine
In InDesign CS3 and above, there is support for alternate, persistent ExtendScript
‘engines’.

Building further onto that feature, APID allows you to ‘route’ specific events to a specific,
named engine by appending a # and the engine name to the event code in the filter

expression.

One of the advantages of using a named engine is that named engines are persistent – i.e.
if you define a global variable at one time, that global variable will retain its value and be
available on the next invocation.

An example to demonstrate a ‘selection counter’ – a page item that counts how many
times it has been selected. This example will only work in InDesign CS3; in CS and CS2,
the engine name is ignored.

Create a new document in InDesign CS3, and set the Event Filter to
selected#SelectionCounter.

This means that the page item will react to selected events, and these events will be
processed by the event handler while running in a scripting engine called
SelectionCounter.

Set the event handler script of the page item to:
var theCounter;
if (theCounter == undefined)
{
 theCounter = 1;
}
else
{
 theCounter++;
}
alert("This item was selected " + theCounter + " times");

Each time you deselect/reselect the item, you’ll see a message with an ever-increasing
counter value: the variable theCounter is persistent and keeps its value.

You can open and close the document as many times as you want – as long as you don’t
quit InDesign, the variable will remain available.

Now remove the engine name and change the event filter to simply selected, and try
again.

This time, the value displayed for the counter will always be 1 because the default
scripting engine is not persistent.

If you quit out of InDesign, then the persistent values provided by the named engine will
be lost – so this mechanism is not feature-identical to what setDataStore() /
getDataStore(), and insertLabel() / extractLabel() offer. (insertLabel() / extractLabel()
are standard member functions provided by InDesign; setDataStore() / getDataStore()
are provided by APID)

The critical difference is that these function pairs offer persistent storage of data
attached to the document, not to the scripting engine. This persistent data is stored inside
the document, and remains available even if InDesign is stopped and restarted.

You can use an Event Filter set to selected#SelectionCounter with InDesign CS and CS2
without ill effect– but the engine name will be ignored because InDesign CS and
InDesign CS2 do not support alternate, persistent ExtendScript engines.

5.7. Locking InDesign in modal mode while an external application
executes
APID provides a special member function called launchWith(), attached to the application
object. launchWith() has a number of uses.

Its main purpose is to allow you to open a particular document with a particular
application.

InDesign File objects have an execute() member function, but the problem with that is
that when you execute() a document file, you have no control over which application will
be used to open the file – similar to what happens to double-clicking a file.

launchWith() resolves this by allowing you to also designate the application file that must
be used to open a particular document.

A second feature of launchWith() is that you can lock InDesign into modal mode at the
time of launch, and InDesign will remain modally locked until the launched application
terminates. While InDesign is locked, your script continues to run; you can also still
process idle events.

This offers an easy way to integrate InDesign with external applications – at Rorohiko,
we often use REALbasic to create little ‘satellite’ programs with more complex user
interfaces than can easily be built in InDesign; typically these REALbasic programs will
use a ‘global floating palette’ window to simulate a some ‘palette-like’ window. By using
launchWith() we can better integrate these REALbasic applications: InDesign remains
locked in modal mode until the satellite application terminates.

An example REALbasic project, together with an InDesign document and compiled
versions of the REALbasic project are provided with the example material.

Look out for a folder called ExampleSatelliteApp – it contains an example application and
an example document.

5.8. Create a shared subroutine library
See the example LibraryPlugin and MyLibraryUser plugins provided in the APIDToolkit
release. LibraryPlugin sets up a shared subroutine library that is then used by the
MyLibraryUser spln file.
In CS and CS2, libraries are not persistent, and are re-loaded each time they are needed.
In CS3, because the APID engines are made to be persistent, a library will only be loaded
once, and remain available.
Libraries need to be 'carried' by an object – so library subroutines are 'attached' to a
library object.
The sample LibraryPlugin contains the following code:
myOwnLibrary = {};
myOwnLibrary.myfunction = (function(x)
{
 alert(x);
});

this.myOwnLibrary = myOwnLibrary;

This creates a sample library object with a single sample function, which is then 'grafted'

onto the global object 'this'.
The .spln source file subscribes to the user-defined event loadLibrary. The library-using
code then looks like:
if (this.myOwnLibrary == undefined)
{
 var libraryPlugin = GetScriptedPlugin(theItem,"libraryplugin");
 libraryPlugin.handleScriptEvent("loadLibrary");
 alert("Library loaded");
}
this.myOwnLibrary.myfunction("test");

i.e. if the library has not been loaded, it is loaded from the LibraryPlugin.spln by sending
the scripted plugin a loadLibrary event code.

