
© 2002 - 2004 Beam Jive Consulting 9.9.2004
 1 / 18

FLASH CLIENT MANUAL

Beam Jive Consulting

© 2002 - 2004 Beam Jive Consulting 9.9.2004
 2 / 18

Table of contents 1

1 Introduction..3 2
1.1 About the document ..3 3
1.2 What can I do with the Offbeat server and Flash Client? ...3 4
1.3 What can I not do with it?..3 5
1.4 How does it work? ...3 6

1.4.1 Communication ...3 7
1.4.2 The communication model ...3 8

2 Installing the client components...5 9
3 How to use the client component ..6 10
4 Connection handling...7 11

4.1 Defining host and port ...7 12
4.2 Settings the callback functions ...7 13
4.3 Opening the connection ..8 14
4.4 Closing the connection..8 15

5 Sending requests..9 16
6 Receiving messages ..10 17

6.1 General...10 18
6.2 Receiving normal response messages ..10 19
6.3 Receiving push messages ..11 20
6.4 Receiving client disconnect messages ..11 21
6.5 Receiving log messages ...12 22
6.6 Receiving acknowledgement messages..12 23
6.7 Handling errors ..12 24

7 Methods and property listing..13 25
Version history ...18 26
 27

© 2002 - 2004 Beam Jive Consulting 9.9.2004
 3 / 18

1 Introduction 28

1.1 About the document 29

The purpose of this document is to introduce you to the Offbeat Flash client. All examples are in 30
the ActionScript 2 (Flash MX 2004 and Flash MX 2004 Professional) format. 31
It is recommended to read also the Offbeat Manual, which describes the protocol and the 32
concepts of the server side programming with the Offbeat server. 33

1.2 What can I do with the Offbeat server and Flash Client? 34

With Offbeat server and Flash Client, it is possible to: 35
 36

• Create data driven applications 37

• Create communication applications (chats, whiteboards…) 38

• Create controlling and monitoring applications 39
o computer monitoring and remote control 40
o software monitoring and remote controlling 41
o device monitoring and controlling 42
o real-time statistics 43

• Any kind of distributed systems 44
 45

1.3 What can I not do with it? 46

It is not possible to create video or voice communication applications with the Offbeat server. For 47
file uploads and file downloads, some HTTP-server should be used. 48

1.4 How does it work? 49

1.4.1 Communication 50

The Offbeat server is a TCP socket server that uses XML as the communication protocol. In a 51
TCP socket connection, the client-server connection, unlike in HTTP, is continuously open. This 52
means that the client may receive data from the server as push messages. This makes it possible 53
to create real-time communication applications, such as chats and whiteboards. 54
 55
The response times are very fast when there is no latency of creating the connection for each 56
request. A typical round-trip time (send request -> process request -> receive response) for an 57
Offbeat request is only a few milliseconds. The fastest round-trip times in the tests were as small 58
as one millisecond. This means that the client may send up to 1000 requests in one second 59
(depends on the hardware and the application design). 60

1.4.2 The communication model 61

The Offbeat communication model is based on a request-response model. A server programmer 62
creates a server application, which consists of one or more Java class files. The Offbeat Flash 63
Client can then call the server applications. It is possible to send variables to the server 64

© 2002 - 2004 Beam Jive Consulting 9.9.2004
 4 / 18

application. The server application can read the request variables and create the response 65
message dynamically. The response messages are always XML documents. 66
 67
The Offbeat Flash client uses an asynchronous communication model (just as most of the Flash 68
communication objects). This means that you always define a handler function for the response 69
messages. You can process the response as soon as it is received from the server. There are six 70
types of messages defined in the Offbeat protocol (see the Offbeat manual for more details): 71
 72

• Requests 73

• Responses 74

• Push messages 75

• Client disconnect messages 76

• Log messages 77

• Acknowledgement messages 78
 79

There are detailed descriptions of each message type in the following chapters. 80

© 2002 - 2004 Beam Jive Consulting 9.9.2004
 5 / 18

2 Installing the client components 81

The Offbeat Flash Client component can be installed by using the Macromedia Extension 82
Manager application that is freely available from the Macromedia web site. The installation can be 83
done by clicking the .mxp. This will automatically start the Macromedia Extension Manager and 84
install the component. When Flash is restarted, the component will appear in the Components 85
panel. 86

© 2002 - 2004 Beam Jive Consulting 9.9.2004
 6 / 18

3 How to use the client component 87

After installing the Offbeat Flash Client component successfully, it will appear in the Components 88
panel of your Flash authoring environment. The client component can then be dragged on to the 89
stage and the client component properties can be adjusted from the component properties panel. 90
The component properties are explained in the following table: 91

 92

Property Description

Host The host name or IP address of the computer where the Offbeat server is
running. The default value is 127.0.0.1, which connects to the localhost
(same computer).

Port The port number of the Offbeat server. The default value is 8384. Please
note that the Flash clients are not able to connect to ports below 1024
without a policy file.

onConnect The function that will be called when the connection has been established
with the server. The function takes one Boolean argument, which tells if the
connection was made successfully.

onClose The function that is called when the connection is closed (or lost).

onPushMessage A function that is called when a push message is received from the server.

onClientDisconnect A function that is called when a client has disconnected from the server. To
get these messages, you need to register with the application.

onLogMessage A function that is used to handle the incoming log messages.

 93
When the component is on the stage, you should give it an instance name. The instance name is 94
used to control the connection. To assign an instance name to the client, select the component 95
on the stage and write a descriptive name to the Component text box in the Properties panel. 96
 97
The component can be used also directly from ActionScript. To accomplish this, drag the 98
component to the stage and delete it. This will add the component to your project’s library. After 99
that you would create a new client by writing: 100
 101

// Create new client 102
var myClient = new com.bjc.offbeat.OffbeatClient(“127.0.0.1”, 8384); 103
 104
// Define handler functions 105
myClient.onPushMessage = “myOnPushMessage”; 106
myClient.onConnect = “myOnConnect”; 107
 108
// Connect to the server 109
myClient.connect(); 110
 111
... 112

© 2002 - 2004 Beam Jive Consulting 9.9.2004
 7 / 18

4 Connection handling 113

This chapter will show you how to connect to a server, how to close the connection and how to 114
handle the events correctly. 115

4.1 Defining host and port 116

To connect to Offbeat server, you need to know the correct host and port. Host is the IP address 117
or the host name of the computer where the Offbeat server is running. Port is the port number 118
that the server is listening. If the Offbeat server is on the same computer with the client, the host 119
should be 127.0.0.1 or localhost. 120

The host and port parameters can be set from the Properties panel or with ActionScript. The 121
following code shows how to define the host and port parameters with ActionScript: 122

 123

var myConn:OffbeatClient = new OffbeatClient(“127.0.0.1”, 8384); 124

 125

4.2 Settings the callback functions 126

The callback functions (handler functions) can be set from the component properties panel or by 127
using ActionScript. The following code listing shows how to define the callbacks with ActionScript: 128
 129

myConn.onConnect = “myOnConnect”; 130
myConn.onClose = “myOnClose”; 131
myConn.onPushMessage = “myPushHandler”; 132
myConn.onLogMessage = “myLogHandler”; 133
myConn.onClientDisconnect = “myOnClientDisconnect”; 134
 135
function myOnConnect(success:Boolean):Void 136
{ 137
 // The connection is OK 138
 if(success) 139
 { 140
 } 141
 // Connection failed 142
 else 143
 { 144
 } 145
} 146
 147
function myOnClose():Void 148
{ 149
 trace(“Connection was closed”); 150
} 151
 152
function myPushHandler(data:XML, file:String, clientID:String):Void 153
{ 154
 // Handle push message 155
} 156
 157
function myLogHandler(msg:String):Void 158
{ 159
 trace(“I got a log message: “ + msg); 160

© 2002 - 2004 Beam Jive Consulting 9.9.2004
 8 / 18

} 161
 162
function myOnClientDisconnect(clientID:String, clientName:String):Void 163
{ 164
 // A client has disconnected, remove from lists etc... 165
} 166

4.3 Opening the connection 167

When the handler functions have been set, it is time to open the connection. The connection can 168
be opened simply by calling the connect() method. The following example show how to do it: 169
 170

myConn.connect(); 171

 172
When the connection has been opened, the client will automatically call the handler function 173
specified in the onConnect variable. 174

4.4 Closing the connection 175

To close an open connection, the close() method should be called. A call to the close() method 176
will close the connection and call the handler function defined in the onClose property. The 177
following code shows how to call the close() method: 178
 179

myConn.close(); 180

© 2002 - 2004 Beam Jive Consulting 9.9.2004
 9 / 18

5 Sending requests 181

The requests are used to call an application on the server. The connection should be opened 182
before sending the first request. It is possible to pass data to the server application by setting 183
request variables. In the following example we send a basic request to the server: 184
 185

var req = myConn.newRequest(myHandler, “MyApp/MyFile.xma”); 186
myConn.send(req); 187

 188
In the example we sent a request to the application MyApp’s file called MyFile.xma. In the server, 189
there is an application called MyApp that contains a Java class file called MyFile.class. The file 190
extension .xma has to be used when calling the server applications. The first parameter 191
‘myHandler’ is the function that will be called when the response arrives from the server. 192
 193
It can be seen, that the connection object is used to create a new request. The method 194
newRequest creates a new com.bjc.offbeat.XMLRequest object that will be converted to XML and 195
sent to the server. The setVar(name:String, value:String) method of the XMLRequest class can 196
be used to set request variables. The following example shows how set request variables: 197

 198

var req = myConn.newRequest(saveHandler, “News/SaveNews.xma”); 199
req.setVar(“title”, “Offbeat is a server”); 200
req.setVar(“text”, “Offbeat really is a server!”); 201
myConn.send(req); 202

 203
In the server application, the request variables can be read, and the news can be saved to a 204
database. 205
 206

If there is no need to set the handler function, the parameter may be an empty string. This is the 207
case in many chat-like applications. 208

© 2002 - 2004 Beam Jive Consulting 9.9.2004
 10 / 18

6 Receiving messages 209

6.1 General 210

There are five different kind of messages that a Offbeat Flash Client can receive. The most 211
common type of message to receive is a response message. Response messages are generated 212
on the server on your request. Push messages come from other clients. 213

6.2 Receiving normal response messages 214

Normal response messages a reply messages to your requests. The response messages are 215
generated on the server by server applications. The response messages are always XML 216
documents. The response may contain any data. The response message may contain for 217
example database query results or a server generated timestamp or what ever you decide to add 218
to the response message on the server. 219

 220
A response message is handled in the handler function that was defined in the request. The 221
following example shows how to send a request and how to handle the response: 222
 223

// Send some request 224
function sendRequest():Void 225
{ 226

var req = myConn.newRequest(myHandler, “Test/Test1.xma”); 227
myConn.send(req); 228

} 229
 230
// The handler function 231
function myHandler(response:XML, errors:Number):Void 232
{ 233
 if(errors == 0) 234
 { 235
 // Do something with the data ... 236
 } 237
 // There are errors, handle correctly 238
 else 239
 { 240
 // Do some error handling (loop though the errors) 241
 } 242
} 243

 244
The first parameter to the handler function contains the XML formatted response message. The 245
second parameter, errors, contains the number of error that occurred when generating the 246
response on the server. If errors variable is zero, the response is OK and it can be processed. If 247
there is one or more errors in the response, the error can be handled and an appropriate error 248
message can shown to the user. There are two errors in the following response message: 249

 250

<?xml version="1.0" encoding="UTF-8"?> 251
<MSG TYPE="0" FILE="metafile.xma" REQUEST_ID="123123" ERRORS="2"> 252
 <ERROR CODE="0">Error description 1</ERROR> 253
 <ERROR CODE="3">Error description 2</ERROR> 254
</MSG> 255

© 2002 - 2004 Beam Jive Consulting 9.9.2004
 11 / 18

 256

6.3 Receiving push messages 257

The push messages are also generated by the server. The push messages are always sent by 258
some other client that is using the same application. The push messages are also XML 259
documents that can be handled in the same manner as the normal response messages. The 260
following example show how to handle push messages: 261
 262

// Set the push message handler 263
myConn.onPushMessage = “myPushHandler”; 264
 265
// ... open connection etc ... 266
 267
// The handler function 268
function myPushHandler(data:XML, file:String, clientID:String):Void 269
{ 270
 switch(file) 271
 { 272
 case “myServerFile1.xma”: 273
 // Do something with the message 274
 break; 275
 276
 case “myOtherServerFile.xma”: 277
 // Do something 278
 break; 279
 280
 default: 281
 // No handler specified, do nothing 282
 break; 283
 } 284
} 285

 286
By looking the code listing above, it can be seen that there are three variables that can be used to 287
handle the push message. The first parameter, data, contains the push message data in XML 288
object. The second parameter, file, can be used to check which server file generated the push 289
message. The third parameter, clientID, is the unique client ID of the user who sent the message. 290
If you have got a list of users from the server earlier, the client ID can be used to resolve for 291
example the name of the sender. 292

6.4 Receiving client disconnect messages 293

The client disconnect messages are automatically generated by the Offbeat server when a client 294
disconnects (or loses the connection). To receive the client disconnect messages, client has to 295
register with an application. This can be done on the server application by calling: 296
application.register(String name). This feature can be used to remove disconnected clients from 297
lists etc. The following example shows how to set the handler function and how to handle the 298
incoming disconnect messages: 299
 300

myConn.onClientDisconnect = “myOnClientDisc”; 301
 302
function myOnClientDisc(clientID:String, clientName:String):Void 303
{ 304
 // Remove client from lists etc… 305
} 306

 307

© 2002 - 2004 Beam Jive Consulting 9.9.2004
 12 / 18

 308

6.5 Receiving log messages 309

A client can receive log messages that are generated in the server application. On the server, the 310
method user.receiveLogMessages(true), has to be called. This makes it easy to create simple 311
monitoring features to applications. The following example shows how to set the property and 312
how to define the handler function for incoming log messages: 313
 314

// Set the callback for log message handler 315
myConn.onLogMessage = “myOnLog”; 316
 317
// Define the handler function 318
function myOnLog(msg:String):Void 319
{ 320
 trace(“I received one log message: “ + msg); 321
} 322

6.6 Receiving acknowledgement messages 323

Acknowledgement messages are generated and sent by the server when the response message 324
is not sent to the client who did the request. For example, if you send a chat message to another 325
user, the server application probably will not send the same message back to you. The server 326
sends an acknowledgement message back to you. 327
 328

You do not have to do anything with the acknowledgement messages, they are used internally in 329
the Offbeat clients. When you use the Offbeat Flash Client debug feature, you may see 330
acknowledgement messages tracing to the output window. 331

6.7 Handling errors 332

Only the normal response messages may contain errors. The push messages will not be sent if 333
an exception or error occurs in the server application. 334

© 2002 - 2004 Beam Jive Consulting 9.9.2004
 13 / 18

7 Methods and property listing 335

OffbeatClient(host:String, port:Number) : Void

The constructor of the class. Creates a new instance of the OffbeatClient class. Can be used in
the following way:

var myConn = new com.bjc.offbeat.OffbeatClient(“127.0.0.1”, 8384);

Please notice that the name of this class was XMLClient in the first beta version.

Parameters:

host: Host name or IP address of the Offbeat server

port: The Offbeat server port number
Returns:

Nothing

OffbeatClient.send(request:XMLRequest) : Boolean

Sends a request to the Offbeat server. The following example shows how the request can be
sent through an open connection:

// First create a request
myRequest = myClient.newRequest(myCallback, “theFile.xma”);
// Then send it
myClient.send(myRequest);

Parameters:

request: The request object that will be sent to the server
Returns:

True if the sending succeeds, false otherwise

OffbeatClient.newRequest(cbk:Function, file:String) : XMLRequest

Get a new request object. The OffbeatClient initializes the request object so that it is ready to be
used.

Parameters:

cbk: The callback function that will be called on the response
file: Name of the file that is called. The file extension should be .xma.

Returns:
New XMLRequest object

OffbeatClient.connect() : Void

Connect to the server. When the connection has been established, the OffbeatClient will call the

© 2002 - 2004 Beam Jive Consulting 9.9.2004
 14 / 18

method that is specified in the onConnect property.

Parameters:

None
Returns:

Nothing

OffbeatClient.close() : Void

Closes the connection to the server. Calls the method that is defined in the onClose property of
the OffbeatClient object.

Parameters:

None

Returns:
Nothing

OffbeatClient.isConnected() : Boolean

Can be used to check if the connection to the server is open.

Parameters:

None
Returns:

True if the connection is open, false if the connection is closed.

OffbeatClient.onPushMessage : String

A property that can be used to define the function that is called when a push message has been
received. The push message handler function should always take three parameters: data:XML,
file:String, clientID:String. The following code listing shows the basic way to set the push
message function:

// Set the push message handler
myConn.onPushMessage = “myPushHandler”;

// ... open connection etc ...

// The handler function
function myPushHandler(data:XML, file:String, clientID:String):Void
{
 switch(file)
 {
 case “myServerFile1.xma”:
 // Do something with the message
 break;

 case “myOtherServerFile.xma”:
 // Do something
 break;

 default:
 // No handler specified, do nothing

© 2002 - 2004 Beam Jive Consulting 9.9.2004
 15 / 18

 break;
 }
}

OffbeatClient.onConnect : String

With this property it is possible to set a callback function that is called after the connection has
been made. The callback function takes one Boolean parameter that tells if the connection was
successfully opened or not. The following example shows how the property should be set and
also the format of the callback function.

// Set the callback
myConn.onConnect = “myOnConnect”;
// Connect
myConn.connect();

// The callback function
function myOnConnect(success:Boolean):Void
{
 if(success)
 {
 // The connection is now open
 }
 else
 {
 // Failed to create the connection
 }
}

OffbeatClient.onClose : String

By setting this property, it is possible to call a function when the connection is closed. The
callback function will be called also when the OffbeatClient.close() method is called. The
following example shows how to set the property and how to define the onClose callback
function:

myConn.onClose = “myOnClose”;

// The callback
function myOnClose()
{
 // The connection was closed
}

OffbeatClient.onClientDisconnect : String

Property that can be used to define a callback method that will be called when a client
disconnect message has been received. The Offbeat server sends the client disconnect
messages automatically to all clients who have registered to the same application as the
disconnecting client (See the Offbeat user manual for further details). The following example
shows how to set the property and how to define the callback function.

myConn.onClientDisconnect = “myOnClientDisc”;

© 2002 - 2004 Beam Jive Consulting 9.9.2004
 16 / 18

// The callback function
function myOnClientDisc(clientID:String, clientName:String):Void
{
 // A client has disconnected, remove from lists etc...
}

OffbeatClient.onLogMessage : String

This property can be set to handle incoming log messages. See the Offbeat user manual to find
out more about logging. The following example shows how to set the property and how to define
the callback function that handles the log messages:

myConn.onLogMessage = “myOnLog”;

// The log message handler function
function myOnLog(msg:String):Void
{
 // Show the message etc...
}

OffbeatClient.debug : Number

This property can be set to receive debug information from the OffbeatClient class. The debug
feature can be used only in the Flash design environment. It produces debug messages by
using the AS trace function. The default value of the property is 0 (no debugging). The debug
can be set to 1 and 2 to receive debug information. The debug level 1 shows only basic
information about the events, but the debug level 2 shows also the data that is handled.

OffbeatClient.filePrepend : String

A property that can be used to add text in front of all filenames that are used in the requests.
This is handy when the application directory may change. The following example shows how to
add a path to all requests:

myConn.filePrepend = “myAppDirectory/”;
// Request that will call file “myAppDirectory/myFile.xma”
myRequest = myConn.newRequest(myCbk, “myFile.xma”);

XMLRequest.setVar(name:String, value:String) : Void

The method can be used to set request variables. The request variables can be read by the
server application. The following example shows how to send information about a person to the
server application:

myRequest = myConn.newRequest(myCallback, “SavePerson.xma”);
// Set variables
myRequest.setVar(“first_name”, “John”);
myRequest.setVar(“last_name”, “Doe”);
// Send
myConn.send(myRequest);

Parameters:

© 2002 - 2004 Beam Jive Consulting 9.9.2004
 17 / 18

name: The name of the request variable to set
value: Value of the request variable to set

Returns:
Nothing

© 2002 - 2004 Beam Jive Consulting 9.9.2004
 18 / 18

Version history 336

Version Date Author Description

1.0 7.1.2004 Kai Hannonen First version

1.1 9.9.2004 Kai Hannonen Changed the main class name to
OffbeatClient (used to be XMLClient).
Changed the OffbeatClient.newRequest
description (the parameter was changed
from String to Function type).

 337

