
© 2002 - 2004 Beam Jive Consulting 20.9.2004
 1 / 47

USER MANUAL

Beam Jive Consulting

© 2002 - 2004 Beam Jive Consulting 20.9.2004
 2 / 47

Table of contents 1

1 Introduction..5 2
1.1 What is Offbeat server? ..5 3
1.2 Who should use the Offbeat server?..5 4
1.3 What can you do with the Offbeat server?...5 5
1.4 How does it work? ...5 6

2 Protocol ...6 7
2.1 Requests ..6 8
2.2 Responses ...6 9

2.2.1 Response messages ..6 10
2.2.2 Push messages...7 11
2.2.3 Acknowledgement messages ..8 12
2.2.4 Disconnect messages...8 13
2.2.5 Log messages...8 14

3 Requests ...9 15
3.1 General...9 16
3.2 Reading a variable from the request ..9 17
3.3 Checking if a variable exists in the request object ..9 18

4 Responses ..10 19
4.1 General...10 20
4.2 Adding data to the response message ..10 21
4.3 Adding a ResultSet to the response...11 22
4.4 Adding a list of existing groups to the response..12 23
4.5 Adding a list of users in a group to the response ..13 24
4.6 Adding a list of users in the application to the response ..14 25
4.7 Controlling the response output..14 26

5 Applications...15 27
5.1 General...15 28
5.2 Accessing applications..15 29
5.3 Groups..15 30
5.4 Application properties..15 31
5.5 Registering and unregistering users ..16 32
5.6 Controlling the ban list...16 33

6 Groups...17 34
6.1 General...17 35
6.2 Group ID...17 36
6.3 Predefined groups ...17 37
6.4 Adding user to a group..17 38
6.5 Testing user existence in a group ..18 39
6.6 Removing user from a group ..18 40
6.7 Getting the user count in a group ...18 41
6.8 Group names and descriptions...18 42

© 2002 - 2004 Beam Jive Consulting 20.9.2004
 3 / 47

6.9 Group properties..18 43
7 Users ...19 44

7.1 General...19 45
7.2 Public ID and private ID ..19 46
7.3 User properties ..19 47
7.4 Dropping and banning a user ...19 48

8 Database connections..20 49
8.1 General...20 50
8.2 Creating a connection pool ...20 51
8.3 Running queries...21 52
8.4 Running updates..21 53

9 Object pooling ...23 54
9.1 General...23 55
9.2 Setting object to the pool...23 56
9.3 Reading an object from the pool...23 57
9.4 Checking if the object exists in the pool...23 58
9.5 Removing an object from the pool..24 59

10 Logging..25 60
10.1 General...25 61
10.2 Generating log messages...25 62
10.3 Receiving log messages ...25 63

11 Error handing ..26 64
11.1 General...26 65
11.2 Generating an exception...26 66
11.3 Handling errors on the client...26 67

12 Installing the server...27 68
13 Configuring and starting the server ...28 69
14 Creating an application...29 70

14.1 General...29 71
14.2 The directory structure ..29 72
14.3 Writing the first application..29 73
14.4 Compiling the application..30 74
14.5 How the applications are loaded ..30 75
14.6 How to disable an application...30 76
14.7 Flash cross-domain policy files...30 77

15 Hardware requirements..31 78
16 Software requirements ...32 79

16.1 Operating system...32 80
16.2 Java platform..32 81

17 Server characteristics ...33 82
17.1 Number of concurrent users ...33 83
17.2 Size of the requests...33 84
17.3 Size of the response messages ...33 85
17.4 Response times ...33 86

© 2002 - 2004 Beam Jive Consulting 20.9.2004
 4 / 47

18 Programming API ...34 87
18.1 The application object ...34 88
18.2 The group object..36 89
18.3 The user object ..38 90
18.4 The request object...40 91
18.5 The response object..41 92
18.6 The logger object...44 93
18.7 The database object..44 94
18.8 The pool object ..45 95

Version history ...47 96
 97

© 2002 - 2004 Beam Jive Consulting 20.9.2004
 5 / 47

1 Introduction 98

This manual will introduce you to the Offbeat server. 99

1.1 What is Offbeat server? 100

Offbeat server is a real-time application and communication server written in Java. The Offbeat 101
server uses a simple and light-weight XML based protocol in messaging. 102

1.2 Who should use the Offbeat server? 103

The Offbeat server suits best for the developers who are familiar with the Java programming 104
language and XML. When fast response times and client-to-client communications are required, 105
the Offbeat server is a good choice. 106
The client-side development can be done in any programming language that supports TCP 107
sockets and XML parsing. For example Flash ActionScript, Java and C++ are suitable languages. 108

1.3 What can you do with the Offbeat server? 109

The Offbeat server includes some nice features, such as database connection pooling, object 110
pooling, user variables and groups. Basically it is possible to create any kind of applications with 111
it. You can create database applications, chats, messaging boards, real-time logging and 112
monitoring applications, just to name a few. 113

1.4 How does it work? 114

The Offbeat protocol is quite similar to the normal HTTP request-response model. Client 115
applications pass variables in requests to the Offbeat server and it returns an XML document as a 116
response. New applications can be programmed in a very easy fashion and the same application 117
can then be used by any client that supports TCP sockets and XML. 118

It is possible to create new applications for the server. Applications are loaded into the memory 119
when the server starts. Each application consists of one or more Java class files. Each file can 120
then be called from the client to produce an XML document. 121

© 2002 - 2004 Beam Jive Consulting 20.9.2004
 6 / 47

2 Protocol 122

This chapter will introduce you to the XML based protocol used by the Offbeat server and the 123
client applications. 124
The Offbeat protocol is unique in the way it processes the requests. The response messages can 125
be sent directly to another user, to groups of users or to everyone using the same application. In 126
the Offbeat server the requests are always processed by using the following pattern: 127

• Read the request 128

• Parse the request 129

• Get the requested application (from an internal list) 130

• Set user variables (request variables, application variables, group variables…) 131

• Execute the application (create the XML response message) 132

• Send the response (to the user who sent the request, to other clients, to groups…) 133

2.1 Requests 134

The request messages are always in the same XML format. All request contain the request ID, 135
name of the file that is called and a set of request variables. The basic structure of a request 136
message is shown below. 137
 138

<?xml version="1.0" encoding="UTF-8"?> 139
<REQUEST FILE="filename.xma" REQUEST_ID="123123"> 140
 <ITEM NAME="var1"><![CDATA[Value for variable 1]]></ITEM> 141
 <ITEM NAME="var2"><![CDATA[Value for variable 2]]></ITEM> 142
 143
 ... 144
 145
 <ITEM NAME="varN"><![CDATA[Value for variable n]]></ITEM> 146
</REQUEST> 147

 148
The request ID is an unique number generated by the Offbeat client library. It is used to map the 149
request messages to response messages. All data of the request variables are inside of CDATA 150
blocks. This makes it possible to send for example HTML data in requests (HTML tags will not 151
mess up the XML syntax). 152

2.2 Responses 153

A response message is generated every time a request comes in. The response messages 154
always contain a root element MSG that is generated by the server. Everything inside the root 155
elements is generated by the application that was called. The document may contain XML data or 156
character data. 157

2.2.1 Response messages 158

The response messages are sent back to the client who sent the request. In the user-written 159
Offbeat application this means that the response document is first generated and then the 160
method response.send() is called. The user will receive an XML document containing the data 161
that was generated in the server application. The format of the response messages is shown 162
below. 163

© 2002 - 2004 Beam Jive Consulting 20.9.2004
 7 / 47

 164

<?xml version="1.0" encoding="UTF-8"?> 165
<MSG TYPE="0" FILE="metafile.xma" REQUEST_ID="123123" ERRORS="0"> 166
 167
 ... Your data here 168
 169
</MSG> 170

 171
The TYPE-attribute tells that it is a normal response message. The REQUEST_ID-attribute helps 172
the client library to map the response message to a request (an appropriate callback will be called 173
by the client). The ERRORS-attribute tells the number of errors in the response. If there are 174
errors in the response, the response XML document will look like the following. 175
 176

<?xml version="1.0" encoding="UTF-8"?> 177
<MSG TYPE="0" FILE="metafile.xma" REQUEST_ID="123123" ERRORS="2"> 178
 <ERROR CODE="0">Error description</ERROR> 179
 <ERROR CODE="3">Error description</ERROR> 180
</MSG> 181

 182

It can be seen that the response contains two errors. Error codes make it possible to display the 183
error messages in your own language. All server generated error codes are bigger than zero, 184
custom errors, generated by you, should always be negative. Error descriptions contain an 185
English explanation of the error and in some cases also a stack trace of the application. The error 186
codes are listed below: 187
 188

0 = Malformed request 189
1 = Maximum request size exceeded 190
2 = Exception while processing the content 191
3 = Wrong type of file ending 192
4 = File not found 193

 194

2.2.2 Push messages 195

Clients can receive push messages from other clients that are connected to the same Offbeat 196
server. The push messages always contain a root element and some other data. The format of a 197
push message is shown below. 198
 199

<?xml version="1.0" encoding="UTF-8"?> 200
<MSG TYPE="1" FILE="myfile.xma" SENDER="clients public ID"> 201
 202
 ... Any data here 203
 204
</MSG> 205

 206
The TYPE-attribute tells that it is a push message. The SENDER-attribute can be used to map 207
the message to its sender. The client can examine the FILE-attribute to find out where the 208
message came from (and therefore know what to do with the message). 209

© 2002 - 2004 Beam Jive Consulting 20.9.2004
 8 / 47

2.2.3 Acknowledgement messages 210

The acknowledgement messages are sent back to the client when the response.send() method is 211
not called in the Offbeat server application. The client does not need to react to these messages. 212
They are used to make the client API (Application Programming Interface) more simple. The 213
format of the acknowledgement messages is shown below. 214
 215

<?xml version="1.0" encoding="UTF-8"?> 216
<MSG TYPE="2" FILE="myfile.xma" REQUEST_ID="123123"></MSG> 217

 218
When an acknowledgement message arrives to the client, the Offbeat library will check the 219
REQUEST_ID-attribute and remove the corresponding request from the client library’s internal 220
request stack. 221

2.2.4 Disconnect messages 222

When a client disconnects (or he/she loses connection to the internet), a disconnect message will 223
be sent to all users that are registered to the same application. A client can be registered to more 224
than one application at the same time. The registering and unregistering is done by using the 225
application.register(String name) and application.unregister() methods in an Offbeat application. 226
If both client A and client B have been registered to the application MyApplication and then client 227
A closes the connection, the client B will receive a disconnect message that contains the public 228
ID of the client A. The disconnect messages are always in the following format. 229
 230

<?xml version="1.0" encoding="UTF-8"?> 231
<MSG TYPE="3" USER_ID="publicID" NAME="users name" /> 232

 233
The TYPE-attribute tells that it is a disconnect message. The USER_ID-attribute contains the 234
public ID of the client who has disconnected. The NAME-attribute is an attribute that tells the 235
name of the client that disconnected. It may be used for example in chat-like applications to hold 236
the nick name of a client. 237

2.2.5 Log messages 238

Clients may receive log messages. When the user.receiveLogMessages(boolean receive) 239
method has been called in the Offbeat application, the user will receive all log messages that are 240
sent by using the logger.log(String message) method. This feature can be used to create 241
custom monitoring interfaces to the Offbeat applications. The log messages are always in the 242
following format: 243
 244

<?xml version="1.0" encoding="UTF-8"?> 245
<MSG TYPE="4"><![CDATA[Message data]]></MSG> 246

© 2002 - 2004 Beam Jive Consulting 20.9.2004
 9 / 47

3 Requests 247

3.1 General 248

Client applications can send requests to the Offbeat server. The requests may contain zero or 249
more request variables that can be read in the application that is called. The requests, as well as 250
responses, are \u0000 terminated XML documents (strings). This means that the server reads the 251
incoming data until it reads a \u0000 character. 252

3.2 Reading a variable from the request 253

In an Offbeat application the request variables can be read by using the request.getVar(String 254
name) method. The method returns the variable as String if it exists and null if it does not exist in 255
the request. The following code listing illustrates a simple application that echoes a request 256
variable back to the client. 257
 258

import com.bjc.content.*; 259
 260
public class EchoVariable extends MetaContent implements MetaAccess 261
{ 262
 public void processContent() throws CustomException 263
 { 264
 response.addData(request.getVar(“myVar”)); 265
 response.send(); 266
 } 267
} 268

3.3 Checking if a variable exists in the request object 269

Sometimes it is wise to check the existence of a request variable before trying to read it. This can 270
be done by using the request.isSet(String name) method. The method simply returns true or 271
false. 272

© 2002 - 2004 Beam Jive Consulting 20.9.2004
 10 / 47

4 Responses 273

4.1 General 274

The response messages are generated by the user-written Offbeat applications. The responses 275
are generated by using the response-object. The methods in the response object are used to add 276
XML data to the response message. The response-object contains the following methods: 277
 278

• void startNode(String name) 279

• void setAttribute(String name, String value) 280

• void endNode(String name) 281

• void addData(String data) 282

• void addCData(String cdata) 283

• void addRSNode(String name, ResultSet rs) 284
 285

• void addGroupList() 286

• void addUsersInGroup(String gid) 287

• void addUserList() 288
 289

• void send() 290

• void sendUser(String uid) 291

• void sendGroup(String gid) 292

• void sendAll() 293
 294
These methods are used to generate XML documents and to send them back to the client and 295
possibly to other clients as well. 296

4.2 Adding data to the response message 297

Normal character data can be added to the response message by using the addData(String data 298
) and addCData(String cdata) methods. The difference between these methods is that the 299
addCData-method adds the text inside of a CDATA block. Inside the CDATA block you can have 300
HTML tags and they will not mess up the XML syntax. The following code listing is a simple 301
example of how to add some character data to the response. 302
 303

import com.bjc.content.*; 304
 305
public class OutputSomeData extends MetaContent implements MetaAccess 306
{ 307
 public void processContent() throws CustomException 308
 { 309
 response.addCData(“Just some data”); 310
 response.send(); 311
 } 312
} 313

 314

© 2002 - 2004 Beam Jive Consulting 20.9.2004
 11 / 47

The response message would look like the following XML document: 315

<?xml version="1.0" encoding="UTF-8"?> 316
<MSG TYPE="0" FILE="OutputSomeData.xma" REQUEST_ID="12" ERRORS="0"> 317
<![CDATA[Just some data]]> 318
</MSG> 319

 320
The methods startNode, setAttribute and endNode can be used to create XML elements to the 321
response. In the following example these methods are used to create an XML response that 322
describes a person. 323
 324

import com.bjc.content.*; 325
 326
public class GetPerson extends MetaContent implements MetaAccess 327
{ 328
 public void processContent() throws CustomException 329
 { 330
 // Set the first name 331
 response.startNode(“FIRSTNAME”); 332
 response.addData(“John”); 333
 response.endNode(“FIRSTNAME”); 334
 335
 // Set the last name 336
 response.startNode(“LASTNAME”); 337
 response.addData(“Doe”); 338
 response.endNode(“LASTNAME”); 339
 340
 // Send to the client 341
 response.send(); 342
 } 343
} 344

 345
This example application would generate the following output. 346
 347

<?xml version="1.0" encoding="UTF-8"?> 348
<MSG TYPE="0" FILE="GetPerson.xma" REQUEST_ID="14" ERRORS="0"> 349
 <FIRSTNAME>John</FIRSTNAME> 350
 <LASTNAME>Doe</LASTNAME> 351
</MSG> 352

 353

4.3 Adding a ResultSet to the response 354

It is also possible to add a Java ResultSet object to the response by using the 355
response.addRSNode(String name, ResultSet rs). This method simplifies the code because 356
there is no need to iterate through the resultset. The following example application shows how the 357
Java ResultSets can be added to the response. In the example we get all persons from the 358
database and add the results to the response. 359
 360
 361
 362
 363
 364

© 2002 - 2004 Beam Jive Consulting 20.9.2004
 12 / 47

 365
 366

import com.bjc.content.*; 367
import java.sql.*; 368
 369
public class GetPersons extends MetaContent implements MetaAccess 370
{ 371
 public void processContent()throws CustomException 372
 { 373
 // Run the query by using the connection ‘con1’ 374
 ResultSet rs = database.runQuery(“con1”,“SELECT * FROM person”); 375
 376
 // Add the query results to the response 377
 response.addRSNode(“PERSONS”, rs); 378
 379
 // Send to the client 380
 response.send(); 381
 } 382
} 383

 384
If there are fields id, firstname and lastname in the person table, this application would generate a 385
response message like the following. 386
 387

<?xml version="1.0" encoding="UTF-8"?> 388
<MSG TYPE="0" FILE="GetPersons.xma" REQUEST_ID="41" ERRORS="0"> 389
 <PERSONS> 390
 <ROW> 391
 <COL NAME=”id”><![CDATA[13]]></COL> 392
 <COL NAME=”firstname”><![CDATA[John]]></COL> 393
 <COL NAME=”lastname”><![CDATA[Doe]]></COL> 394
 </ROW> 395
 396
 ... More persons ... 397
 398
 </PERSONS> 399
</MSG> 400

 401

4.4 Adding a list of existing groups to the response 402

With the method response.addGroupList() it is possible to add a list of all groups in the 403
application to the response message. The following example demonstrates how the method 404
should be used. 405
 406

import com.bjc.content.*; 407
 408
public class GetGroups extends MetaContent implements MetaAccess 409
{ 410
 public void processContent() throws CustomException 411
 { 412
 // Add group list to the response 413
 response.addGroupList(); 414
 // Send to the client 415
 response.send(); 416
 } 417
} 418

 419

© 2002 - 2004 Beam Jive Consulting 20.9.2004
 13 / 47

If there are two groups in the application, the response message would look like the following 420
XML document. 421
 422

<?xml version="1.0" encoding="UTF-8"?> 423
<MSG TYPE="0" FILE="GetGroups.xma" REQUEST_ID="50" ERRORS="0"> 424
 <GROUP ID=”a65d76ad65f65f65451b3123” NAME=”My Group1” USERS=”75”> 425
 The description of the group 426
 </GROUP> 427
 <GROUP ID=”cd786c778a8745c7aad35d54” NAME=”My Group2” USERS=”4”> 428
 The description of the group number 2 429
 </GROUP> 430
</MSG> 431

 432
The ID-attribute is the unique group ID of the group. It is an ID that the Offbeat server generates 433
when it creates the group. The group ID is used to access the group (ie. Send message to a 434
group). 435
NAME-attribute is the human-readable name of the group. Inside of the GROUP tags there is the 436
human-readable description of the group. The programmer defines the group name and the 437
description when the group is being created. 438

USERS-attribute tells how many users are there in the group at the moment. 439

4.5 Adding a list of users in a group to the response 440

The method response.addUsersInGroup(String gid) can be used to add a list of members in a 441
group to the response message. The parameter gid is the unique group ID of the group. The 442
following code listing shows how the method should be used. 443
 444

import com.bjc.content.*; 445
 446
public class GetGroupMembers extends MetaContent implements MetaAccess 447
{ 448
 public void processContent() throws CustomException 449
 { 450
 // Add a list of members in the group to the response 451
 response.addUsersInGroup(request.getVar(“theGID”)); 452
 // Send to the client 453
 response.send(); 454
 } 455
} 456

 457

In the example, a request variable ‘theGID’ is read and passed to the addUsersInGroup method. 458
If there are two members in the group, the response message will take the following form. 459
 460

<?xml version="1.0" encoding="UTF-8"?> 461
<MSG TYPE="0" FILE="GetGroupMembers.xma" REQUEST_ID="72" ERRORS="0"> 462
 <USER ID=”8dhfd125a12fg3g216”>The users name in the group</USER> 463
 <USER ID=”51fs15g554g23a3dd3”>Users name in the group</USER> 464
</MSG> 465

 466
The ID-attribute is the public ID of the client. The public ID is used to access a certain user (ie. To 467
send a message to the user). 468

© 2002 - 2004 Beam Jive Consulting 20.9.2004
 14 / 47

4.6 Adding a list of users in the application to the response 469

Some times it is useful to know all users who are registered to the same application. This can be 470
achieved by using the response.addUserList() method. A call to this method will add a list of all 471
users to the response message. All users who have registered to the application by calling the 472
application.register(String name) method will be on the list. The following example shows how 473
theresponse.addUserList() method should be used. 474
 475

import com.bjc.content.*; 476
 477
public class GetAppMembers extends MetaContent implements MetaAccess 478
{ 479
 public void processContent() throws CustomException 480
 { 481
 // Add a list of members in the group to the response 482
 response.addUsersList(); 483
 // Send to the client 484
 response.send(); 485
 } 486
} 487

 488
The output would look like the XML document below. 489
 490

<?xml version="1.0" encoding="UTF-8"?> 491
<MSG TYPE="0" FILE="GetAppMembers.xma" REQUEST_ID="76" ERRORS="0"> 492
 <USER ID=”8dhfd125a12fg3g216”>Users name in the application</USER> 493
 <USER ID=”51fs15g554g23a3dd3”>Users name in the application</USER> 494
</MSG> 495

 496
Again, the ID is the public ID of the user. Inside the USER tag, there is the name of the user 497
(given in the application.register method call). 498

4.7 Controlling the response output 499

The response message can be sent back to the user who sent the request, to another user, to a 500
group or to all users in the same application. The following example illustrates how a message 501
can be sent to another user (basic chat messaging). 502
 503

import com.bjc.content.*; 504
 505
public class SendMessage extends MetaContent implements MetaAccess 506
{ 507
 public void processContent() throws CustomException 508
 { 509
 // Add a list of members in the group to the response 510
 response.addCData(request.getVar(“theMsg”)); 511
 512
 // Send private message to another client 513
 response.sendUser(request.getVar(”theClient”)); 514
 } 515
} 516

 517
The user who sent the request, would receive an acknowledgement message and the other user 518
would receive a push message. In the same manner, the message can be sent to groups and to 519
all registered users in the application. 520

© 2002 - 2004 Beam Jive Consulting 20.9.2004
 15 / 47

5 Applications 521

5.1 General 522

The Offbeat server is based on the idea of applications. It is possible to create new applications 523
as needed. However, it is also possible to access more than one application through one 524
socket connection. The application object is used to access the properties of the application and 525
to manage the groups inside the application. 526

5.2 Accessing applications 527

The scope of the application object is always the application in which the requested file belongs 528
to. In other words, you can not access ApplicationA properties from the ApplicationB. 529

5.3 Groups 530

There are four methods in the application-object that can be used to handle groups in the given 531
application. The methods are: 532

• String createGroup(String name, String description) 533

• boolean removeGroup(String gid) 534

• boolean groupExists(String gid) 535

• Vector getGroups() 536
 537
These methods can be used to create and remove groups dynamically. The following code listing 538
shows how to create a group dynamically. 539
 540

import com.bjc.content.*; 541
 542
public class CreateGroup extends MetaContent implements MetaAccess 543
{ 544
 public void processContent() throws CustomException 545
 { 546
 String groupID = new String(); 547
 548
 // Create the group 549
 groupID = application.createGroup(request.getVar(“name”), 550
request.getVar(“desc”)); 551
 552
 // Add the ID of the created group to the response 553
 response.addData(groupID); 554
 555
 // Send the response back to the client 556
 response.send(); 557
 } 558
} 559

 560

5.4 Application properties 561

It is possible to add properties to an application. The application variables are shared with all 562
clients. The following methods of the application object can be used to manage the properties: 563

© 2002 - 2004 Beam Jive Consulting 20.9.2004
 16 / 47

• void setProperty(String name, String value) 564

• String getProperty(String name) 565

• void unsetProperty(String name) 566
 567
Please notice that the application properties can not be locked. If two or more clients read the 568
existing value of a property and then set it to a new value based on the old value, it is possible 569
that new value is not what it is supposed to be. This happens because the clients read the old 570
value before setting the new value. 571

5.5 Registering and unregistering users 572

It is possible to register user with an application by calling the application.register() method. The 573
registered users will receive the client disconnect messages and all the messages that are sent 574
by calling the response.sendAll() method. The application.unregister() method just removes the 575
registration from the memory. 576

5.6 Controlling the ban list 577

There are three methods in the application-object that can be used to control the ban list: 578
 579

• void removeBan(String ip) 580

• void ban(String publicID) 581

• void banIP(String ip) 582
 583
These methods are pretty self-descriptive. The application.removeBan method removes the ban 584
for the given IP address. With the application.ban and application.banIP you can dynamically ban 585
access to the server. 586

© 2002 - 2004 Beam Jive Consulting 20.9.2004
 17 / 47

6 Groups 587

6.1 General 588

It is possible to create groups to applications dynamically by using the methods in the application 589
object or statically by using a XML configuration file groups.xml (in the groups folder of the 590
application). Groups may have properties and an unlimited amount of users as members. 591

6.2 Group ID 592

The Offbeat server gives a unique group ID to each group when they are created. The group ID is 593
used to access the groups. 594

6.3 Predefined groups 595

The groups can be defined in a configuration file or by method calls at the run time. The 596
predefined groups can be defined in a file called groups.xml. The file should locate in the 597
applications sub directory called conf. If there is no need for predefined groups, the file does not 598
have to be present. The syntax of the groups.xml is as follows: 599
 600

<GROUPS> 601
 <GROUP> 602
 <NAME>Name of the group 1</NAME> 603
 <DESCRIPTION>The description of the group 1</DESCRIPTION> 604
 </GROUP> 605
 <GROUP> 606
 <NAME>Name of the group 2</NAME> 607
 <DESCRIPTION>The description of the group 2</DESCRIPTION> 608
 </GROUP> 609
 610
 ... more groups here 611
 612
</GROUPS> 613

6.4 Adding user to a group 614

Method group.addUserToGroup(String gid, String uid, String name) can be used to add user to 615
a group. The parameter gid is the unique ID of the group. The parameter uid is the public ID of 616
the user that should be added to the group. The parameter name is the name of the user in that 617
group. The following code listing shows how a user can be added to a group. 618
 619

import com.bjc.content.*; 620
 621
public class JoinGroup extends MetaContent implements MetaAccess 622
{ 623
 public void processContent() throws CustomException 624
 { 625
 group.addUserToGroup(request.getVar(“myGID”), 626
user.getPublicID(), request.getVar(“myName”)); 627
 } 628
} 629

 630

© 2002 - 2004 Beam Jive Consulting 20.9.2004
 18 / 47

In the example listing, the user.getPublicID() method is used to get the public ID of the user who 631
made the request. 632

6.5 Testing user existence in a group 633

To test if a user has joined a group, the method group.isInGroup(String gid, String uid) can be 634
called. The first parameter is the group ID and the second parameter is the users public ID. 635

6.6 Removing user from a group 636

Method group.removeUserFromGroup(String gid, String uid) can be used to remove user from a 637
group. 638

6.7 Getting the user count in a group 639

Sometimes it is useful to know how many users have joined a group. This can be done by using 640
the group.getUserCount(String gid) method which returns the user count as an integer number. 641

6.8 Group names and descriptions 642

The name and description of a group can be obtained by using methods group.getGroupName(643
String gid) and group.getGroupDescription(String gid). These methods return the information as 644
a String. 645

6.9 Group properties 646

By using the group properties it is possible to share data amongst the users in the group and 647
maintain some additional information about the group. The properties can be set, get and unset 648
by using the following methods of the group object: 649

 650

• void setProperty(String gid, String name, String value) 651

• String getProperty(String gid, String name) 652

• void unsetProperty(String gid, String name) 653

© 2002 - 2004 Beam Jive Consulting 20.9.2004
 19 / 47

7 Users 654

7.1 General 655

Users are the clients that are connected to the Offbeat server. It is possible to set user properties 656
by using the methods in the user object. User has also unique ID’s (unique inside the whole 657
server) that can be used in various ways. 658
User object also contains a method receiveLogMessages(boolean receive). If it is called with 659
true parameter, the user will start receiving all log messages generated by a call to logger.log(660
String msg) inside the application. 661

7.2 Public ID and private ID 662

The public ID should be used for the messaging purposes. It is the ID that can be exposed to 663
other users. The private ID is also unique and similar to the public ID. However, it should be used 664
privately so that the other clients do not know it. Methods user.getPublicID() and user.privateID() 665
can be used to get the IDs. Both methods return a String. 666

7.3 User properties 667

The following methods of the user object can be used to manage the user properties: 668
 669

• void setProperty(String name, String value) 670

• String getProperty(String name) 671

• void unsetProperty(String name) 672
 673

The properties can contain any information. If the client is using more than one application, the 674
properties are available only in application in which it was set. The user properties are private; 675
other clients have no access to them. 676

7.4 Dropping and banning a user 677

Sometimes it may be necessary to drop or ban one single user. It can be done by calling the 678
user.ban() or user.drop() method. 679

© 2002 - 2004 Beam Jive Consulting 20.9.2004
 20 / 47

8 Database connections 680

8.1 General 681

The Offbeat server offers an easy and efficient way to pool database connections and to execute 682
database queries. The database connections are created when the server starts and pooled in 683
the memory. This feature makes the database queries easy and fast. Instead of creating a new 684
connection for each request, the server gets the connections from the pool. The server uses the 685
standard JDBC database API to connect to the databases. 686
It possible to specify the size of the connection pool (how many connections are initially made to 687
the database). The connection pool works so that if there are no free connections left in the pool, 688
the server will create a new one. The administrator should adjust the size of the pool based on 689
the expected load. If the database server does not allow more connections to be made, the 690
queries will fail and a null value will be returned instead of a ResultSet object. 691
The connection pool also takes care of the timed-out connections by reconnecting to the 692
database. 693

8.2 Creating a connection pool 694

The connection pool can be created by adding an XML configuration file called 695
db_connections.xml to the conf directory of the application. The following listing shows the format 696
of the connection pool configuration file (connections to a MySQL server). 697

 698

<DB_CONNECTIONS> 699
 <CONNECTION NAME="conn1" POOLSIZE="15"> 700
 <DRIVER>com.mysql.jdbc.Driver</DRIVER> 701
 <DB_URL>jdbc:mysql://127.0.0.1/my_db1</DB_URL> 702
 <USERNAME>my_username</USERNAME> 703
 <PASSWORD>my_password</PASSWORD> 704
 </CONNECTION> 705
 <CONNECTION NAME="conn2" POOLSIZE="20"> 706
 <DRIVER>com.mysql.jdbc.Driver</DRIVER> 707
 <DB_URL>jdbc:mysql://10.0.0.2/my_db2</DB_URL> 708
 <USERNAME>my_username</USERNAME> 709
 <PASSWORD>my_password</PASSWORD> 710
 </CONNECTION> 711
</DB_CONNECTIONS> 712

 713
There are two different connections that will be pooled in the server. The NAME-attribute of the 714
CONNECTION tag is used in the application code to specify the database connection. The 715
POOLSIZE-attribute tells the server how many connections it should be pooling. The DRIVER tag 716
is the name of the JDBC driver. The DB_URL specifies the database server URL and the name of 717
the database. Tags USERNAME and PASSWORD are the username and password to the 718
database specified in the DB_URL tag. 719
Notice that the configuration file parameters follow the same syntax as is used when connecting 720
to a database normally through the JDBC API. 721
The correct JDBC driver has to be present and correctly set to the PATH environment 722
variable. 723

© 2002 - 2004 Beam Jive Consulting 20.9.2004
 21 / 47

8.3 Running queries 724

When the connection pool has been configured correctly, the connections may be used through 725
the database object in the Offbeat applications. The database object has method runQuery(726
String conn, String SQL) that can be used to run queries that return a ResultSet (SELECT 727
statements). The first parameter is the connection name (specified in the db_connections.xml) 728
and the second parameter is the SQL statement that will be executed. 729
Together with the response.addRSNode(String name, ResultSet rs) method, it is easy to run 730
queries. The following example listing shows how the queries can be executed. 731

 732
import com.bjc.content.*; 733
import java.sql.ResultSet; 734
 735
public class GetNews extends MetaContent implements MetaAccess 736
{ 737
 public void processContent() throws CustomException 738
 { 739
 // Try to run the query 740
 ResultSet rs = database.runQuery("con", "SELECT * FROM news"); 741
 742
 if(rs != null) 743
 { 744
 // Add the results to the response 745
 response.addRsNode("NEWS", rs); 746
 } 747
 else 748
 { 749
 // Query failed - raise exception 750
 throw new CustomException(-1, "Unable to run query: con"); 751
 } 752
 753
 // Send the response back to user 754
 response.send(); 755
 } 756
} 757

 758

This is the recommended way to run queries. For testing purposes it might be sometimes enough 759
to write just: 760
 761

import com.bjc.content.*; 762
 763
public class GetNews extends MetaContent implements MetaAccess 764
{ 765
 public void processContent() throws CustomException 766
 { 767
 response.addRsNode("NEWS", database.runQuery("con", "SELECT * 768
FROM news")); 769
 response.send(); 770
 } 771
} 772

 773

8.4 Running updates 774

It is possible to run update queries to the database by using the database.runUpdate(String con, 775
String SQL) method. This method should be used to run INSERT, UPDATE and DELETE 776

© 2002 - 2004 Beam Jive Consulting 20.9.2004
 22 / 47

statements. The method returns the number of affected rows as an int or a negative number if the 777
query fails. The error return codes are: 778

-1: Unknown error in the query 779
-2: The connection was not found 780

-3: Unable to connect to the database 781

© 2002 - 2004 Beam Jive Consulting 20.9.2004
 23 / 47

9 Object pooling 782

9.1 General 783

Object pool makes it possible to store any Java objects in the memory. Objects may be database 784
connections, Strings, byte arrays etc. There is one object pool per one user. An object in the pool 785
is accessible only by the user who put the object there; the objects are not shared resources. 786
Objects in the pool exist only in the application where they were set. 787

9.2 Setting object to the pool 788

Objects can be set to the pool by calling the setObject(String name, Object o) method of the 789
pool object. The following code listing shows how the method is used. 790
 791

import com.bjc.content.*; 792
 793
public class StoreData extends MetaContent implements MetaAccess 794
{ 795
 public void processContent() throws CustomException 796
 { 797
 Long obj = new Long(123); 798
 pool.setObject(“myObject”, obj); 799
 } 800
} 801

 802

9.3 Reading an object from the pool 803

Objects can be read from the pool by calling the getObject(String name) method of the pool 804
object. The method has Object as the return type, so it is necessary to cast the object to the type 805
of your object. The following code listing shows how to read a Long object from the pool. 806
 807

import com.bjc.content.*; 808
 809
public class GetStoredData extends MetaContent implements MetaAccess 810
{ 811
 public void processContent() throws CustomException 812
 { 813
 Long obj = (Long) pool.getObject(“myObject”); 814
 ... processing goes on ... 815
 } 816
} 817

 818

9.4 Checking if the object exists in the pool 819

Sometimes it is useful to check the existence of an object in pool. This can be done by calling the 820
isSet(String name) method of the pool object. The method simply return a boolean value that 821
indicates the existence of the object. 822

© 2002 - 2004 Beam Jive Consulting 20.9.2004
 24 / 47

9.5 Removing an object from the pool 823

The method unsetObject(String name) of the pool object can be used to remove an object from 824
the pool. If there is an object with the given name, it will be removed. Otherwise nothing will 825
happen. 826

© 2002 - 2004 Beam Jive Consulting 20.9.2004
 25 / 47

10 Logging 827

10.1 General 828

Logging in the Offbeat server applications can be done by using the built-in logger object and its 829
log(String msg) method. The log method produces log messages that have an automatic 830
timestamp. The timestamp is formatted in the dd.mm.yyyy hh:mm:ss format. 831
A call to the log method will cause the log message to be written to the log file of the application. 832
The log file resides in the log directory of the application and is called application.log. 833

The same log messages may be automatically sent to connected clients. 834
The main log file of the server is called internal.log and is located in the logs directory of the 835
server. All client connects, disconnects etc. will be written to the man log file. 836

10.2 Generating log messages 837

The log messages can be created by calling the log method of the logger object. The following 838
code listing shows how it is done. 839

 840
import com.bjc.content.*; 841
 842
public class MyFoo extends MetaContent implements MetaAccess 843
{ 844
 public void processContent() throws CustomException 845
 { 846
 ... do something ... 847
 848
 logger.log(”We are doing something here!”); 849
 850
 ... do something ... 851
 } 852
} 853

 854

10.3 Receiving log messages 855

Any client can receive the log messages. This can be done by calling user.receiveLogMessages(856
true) in the application. 857

© 2002 - 2004 Beam Jive Consulting 20.9.2004
 26 / 47

11 Error handing 858

11.1 General 859

In some cases it is necessary to raise an exception. For example, if a database query fails, it is 860
wise to generate an exception with a descriptive error message and code. 861

11.2 Generating an exception 862

The error situations can be handled cleanly by throwing a CustomException with a descriptive 863
message and error code. The following code listing shows how it can be done. 864
 865

import com.bjc.content.*; 866
 867
public class MyFoo2 extends MetaContent implements MetaAccess 868
{ 869
 public void processContent() throws CustomException 870
 { 871
 ... do something ... 872
 873
 // Something is going wrong –raise an exception 874
 throw new CustomException(-1, "My description"); 875
 876
 ... do something ... 877
 } 878
} 879

 880

11.3 Handling errors on the client 881

Only normal response messages can contain errors. Push messages are not sent if an exception 882
is thrown while processing the content. In the response messages, there is always the ERRORS-883
attribute present. If the ERRORS-attribute is greater than zero, there are errors in the response. 884
The following response message has two errors. 885
 886

<?xml version="1.0" encoding="UTF-8"?> 887
<MSG TYPE="0" FILE="metafile.xma" REQUEST_ID="123123" ERRORS="2"> 888
 <ERROR CODE="-1">Error description 1</ERROR> 889
 <ERROR CODE="-2">Error description 2</ERROR> 890
</MSG> 891

© 2002 - 2004 Beam Jive Consulting 20.9.2004
 27 / 47

12 Installing the server 892

The installation of the Offbeat server is quite straight forward. To install the Offbeat server on a 893
Windows machine, double click the Offbeat-vX_X_Xp.exe (where X is the version number) in the 894
package. To install the Java version, unzip the Offbeat-vX_X_Xp-VERSION-JAVA.zip to the 895
directory of your choice. 896
To develop Offbeat applications, path to the bin directory of the server should be set to the 897
CLASSPATH environment variable of the computer (or the user who starts the server). 898

© 2002 - 2004 Beam Jive Consulting 20.9.2004
 28 / 47

13 Configuring and starting the server 899

The server does not need a lot of configuration. The only main configuration file, server.xml, is in 900
the conf directory under the Offbeat root directory. The following listing shows the required format 901
of the server.xml file. 902
 903

<?xml version="1.0" encoding="utf-8"?> 904
<SERVER> 905
 <PROPERTY NAME="xml_port">8384</PROPERTY> 906
 <PROPERTY NAME="client_timeout">0</PROPERTY> 907
 <PROPERTY NAME="max_clients">800</PROPERTY> 908
 <PROPERTY NAME="max_request_length">1000000</PROPERTY> 909
 <PROPERTY NAME="max_response_length">10000000</PROPERTY> 910
 <PROPERTY NAME="class_loading_mode">0</PROPERTY> 911
</SERVER> 912

 913
The server properties are named so that they are easy to understand. The xml_port property is 914
the port number to which the server listens to. The client_timeout property is the time in 915
milliseconds that the server waits an idle connection before closing it. The client_timeout value 0 916
means that there is no timeout. The max_clients property is the maximum number of concurrent 917
client connections. The max_request_length property defines the maximum size of the request 918
messages in bytes. The max_response_length property defines the maximum size of the 919
response messages in bytes. The class_loading_mode can be either 0 or 1. The default value is 920
0 and it means that all clients have their own copies of the classes. When the 921
class_loading_mode is 1, it means that all clients load the classes from the same place when 922
needed. 923
 924
The server can be started by going to the bin directory of the Offbeat server and typing: 925
 926

java –jar Offbeat-v1_0_0p.jar 927
 928

in the DOS command prompt or in a Linux shell. If the server does not start, please check the 929
Java version by typing: 930
 931

java –version 932

 933
Version should be 1.4.X. In many performance tests, the server edition of the JRE has been 934
faster than the default client edition. To use the server mode, start the Offbeat server by typing: 935
 936

java –jar –server Offbeat-v1_0_0p.jar 937

 938
You can also use all available switches in your JVM to make the server more robust. For 939
example, you could use the Xmx and Xms switches to control the JVM memory consumption. In 940
the following example, the JVM will allocate 128 MB of memory from the heap at the start and the 941
maximum heap memory consumption is set to 256 MB: 942
 943

java –jar –server –Xmx256m –Xms128 Offbeat-v1_0_0p.jar 944

© 2002 - 2004 Beam Jive Consulting 20.9.2004
 29 / 47

14 Creating an application 945

14.1 General 946

This chapter will show you how to create an application with the Offbeat server. 947

14.2 The directory structure 948

All Offbeat applications are located under the apps directory. It is possible to create new 949
applications just by creating a new subdirectory under the apps directory. Every Offbeat 950
application should have the following directories: 951
 952

• conf 953

• logs 954

• meta_classes 955
 956
The conf directory contains two configuration files: db_connections.xml and groups.xml. Both files 957
are optional. The logs directory contains the application log file called application.log. The 958
meta_classes directory contains the application classes. The meta_classes directory can have 959
also subdirectories. 960

14.3 Writing the first application 961

The application files should be located in the meta_classes directory. As you have probably 962
noticed, the Offbeat applications may be constructed of one or more Java class files. The 963
skeleton of an Offbeat application file is shown in the code listing below. 964
 965

import com.bjc.content.*; 966
 967
public class NameOfTheClass extends MetaContent implements MetaAccess 968
{ 969
 public void processContent() throws CustomException 970
 { 971
 // The code comes here 972
 } 973
} 974

 975
The name of the class should always match with the file name. For example, if you declare a 976
class called MyClass, you should save the file as MyClass.java and compile it to MyClass.class. 977
It is possible to include any external java classes and libraries. The classes should be in the 978
CLASSPATH of the user who starts the server. It is a good idea to divide your external code into 979
packages. 980
The java files may also be in the meta_classes directory because the Offbeat server only loads 981
files that have .class file extension. A better practice would still be to keep the source files in 982
another directory under the application root. For example, /OFFBEAT/apps/MyApp/source, is a 983
good choice. 984

© 2002 - 2004 Beam Jive Consulting 20.9.2004
 30 / 47

14.4 Compiling the application 985

To compile the application, you need to have the Offbeat bin directory in the CLASSPATH 986
environment variable (this is also true when running the server). The easiest way is to move to 987
the application’s meta_classes directory and type java MyClass.java. This will then create a class 988
file and the server may be started. 989
 990
If the Offbeat bin directory is not in the CLASSPATH, you can compile all java files in your 991
meta_classes directory by typing: 992
 993

javac –classpath .;..\..\bin *.java 994

 995
on Windows, or 996
 997

javac –classpath .;../../bin *.java 998

 999

on Linux. 1000

14.5 How the applications are loaded 1001

The Offbeat server uses a custom class loader that loads every class into a b-tree structure at the 1002
start time. Every class is then in the memory of the server, and therefore fast to access when a 1003
request comes in. 1004
Currently there is no mechanism to load, unload or reload classes at the runtime. The feature 1005
might be implemented in the future, if there is a need for it. 1006

14.6 How to disable an application 1007

Sometimes you may need to disable an application temporarily. This can be done by changing 1008
the application name so that the word ‘Inactive_’ preceeds the application name. For example, 1009
the application MyApp would become Inactive_MyApp. 1010
Notice that this does not remove the applications from the server memory, it affects so that the 1011
application will not be loaded when the server is started. 1012

14.7 Flash cross-domain policy files 1013

The Offbeat server can serve cross-domain policy files for Flash applications. The cross-domain 1014
policy files are needed when the swf document is loaded from different domain than where the 1015
Offbeat server is running or the Flash client connects to Offbeat port under 1024. 1016
The Offbeat server loads the crossdomain.xml from conf directory and returns it to Flash client. 1017
For example, if you have the server listening to port 80 on host 127.0.0.1, you could use the 1018
following code in Flash to allow the connection: 1019

 1020
System.security.loadPolicyFile(“xmlsocket://127.0.0.1:80”); 1021

 1022
This should work on Flash Players version 7,0,19,0 and later. Please see www.macromedia.com 1023
for more details. 1024

 1025
 1026

© 2002 - 2004 Beam Jive Consulting 20.9.2004
 31 / 47

15 Hardware requirements 1027

The Offbeat server can run on a mid-range PC computer. To get better performance, the speed 1028
of the CPU and the amount memory, are the key factors. Faster CPU means faster response 1029
times and more memory means more concurrent clients. For a good performance, at least 256 1030
MB RAM is needed. 1031

© 2002 - 2004 Beam Jive Consulting 20.9.2004
 32 / 47

16 Software requirements 1032

16.1 Operating system 1033

The Offbeat server has been developed in pure Java, so it should run on all platforms that have a 1034
Java runtime environment available. The server has been tested on Windows 2000, Windows XP, 1035
Windows NT and Red Hat Linux 8, 9 and 10. We do not promise the correct functioning on other 1036
operating systems and versions. 1037
The Native Windows binary version runs on most Windows machines. It was tested on Windows 1038
XP, Windows 2000 and Windows NT. 1039
The native Linux version runs on all major Linux versions. 1040

16.2 Java platform 1041

The J2SE 1.4.X is required to compile applications for the Offbeat server. Java runtime 1042
environment (JRE) 1.4.x is enough to run the Java version of the server. 1043

© 2002 - 2004 Beam Jive Consulting 20.9.2004
 33 / 47

17 Server characteristics 1044

17.1 Number of concurrent users 1045

The number of concurrent users is limited by the computer CPU speed, amount of available RAM 1046
and the maximum allowed amount of threads by the operating system. The server was load 1047
tested on a 1 GHz CPU machine with 128 MB memory. Then the maximum number of concurrent 1048
users was about 700 when the clients were actually sending requests to the server. 1049
In one of the load tests, we connected 7000 clients to the Offbeat server which was running on a 1050
1.5 GHz Celeron with 512 MB RAM memory. In this case the client activity was very low, so the 1051
processor had time to accept more new clients. 1052
With a high speed machine with a lot of memory, it is possible to get a lot more concurrent 1053
connections. 1054
For the most demanding applications, like real-time controlling (very CPU intensive), the 1055
maximum number of concurrent users may be significantly lower. 1056

17.2 Size of the requests 1057

The size of the requests is not very important issue in the Offbeat server. If the request contains a 1058
lot of request variables, parsing of the request takes naturally longer. 1059

17.3 Size of the response messages 1060

Because Offbeat server does a lot of in-memory processing, the size of the response messages 1061
is important. It better to request a small amount of data many times than to request everything at 1062
the same time. The round-trip times are very small, so it is a good idea to get only the data that 1063
can be displayed at one time. 1064

17.4 Response times 1065

During the test runs, the fastest round-trip times were about 1 ms. Database queries and other 1066
bigger operations take naturally more time than the simple operations. 1067

© 2002 - 2004 Beam Jive Consulting 20.9.2004
 34 / 47

18 Programming API 1068

This chapter describes the programming API of the Offbeat server. There are currently eight 1069
objects that can be used to control the server output. 1070

18.1 The application object 1071

The application object can be used to set application wide settings. Each application has one 1072
application object. The application object cannot be shared between the applications. 1073

 1074

String createGroup(String name, String description)

This method can be used to create new group to an application

Parameters:

name: A human-readable name for the group
description: Description of the group

Returns:
An unique group ID for the group as String

boolean removeGroup(String gid)

This method can be used to remove a group from an application

Parameters:

gid: The group ID of the group that should be removed
Returns:

True if the group existed, false if the group was not found

boolean groupExists(String gid)

This method can be used to check if a group exists in the application

Parameters:

gid: The group ID

Returns:
True if the group exists, false if it does not

Vector getGroups()

Get a list of all groups in the application.

Parameters:

Returns:

A vector that contains the group IDs of all groups in the application

© 2002 - 2004 Beam Jive Consulting 20.9.2004
 35 / 47

void setProperty(String name, String value)

Set an application property. The properties are shared with all users of the application.

Parameters:

name: Name of the property
value: Value of the property

Returns:

String getProperty(String name)

Get an application property.

Parameters:

name: The name of the property to get
Returns:

The value of the property, or null if the property does not exist

void unsetProperty(String name)

Remove an application property.

Parameters:

name: Name of the property to remove
Returns:

void register(String name)

Register the user with the application. When this is called, the user will receive the disconnect
messages and all messages that are sent by using the sendAll() method.

Parameters:

name: Name of the user in the application.
Returns:

void unregister()

Unregister the user. When called, the user will not receive the disconnect messages or the
messages sent by calling the sendAll() method.

Parameters:
Returns:

String getPath()

Return an absolute path to the application.

Parameters:

© 2002 - 2004 Beam Jive Consulting 20.9.2004
 36 / 47

Returns:
Path to the application directory

void removeBan(String ip)

Removes the given IP address from the list of banned addresses.

Parameters:

ip: The IP address that should be removed from the ban list
Returns:

void ban(String publicID)

Can be used to ban a currently connected client.

Parameters:

publicID: Public ID of the client to ban
Returns:

void banIP(String ip)

Add the given IP to the list of banned addresses

Parameters:

ip: IP address that should be banned
Returns:

Hashtable getUsers()

Returns a list of users that have registered with the application. The method returns a Hashtable
that contains publicID and name for each user.

Parameters:

Returns:

Hashtable containing all users in the application

 1075

18.2 The group object 1076

The group object can be used to control the groups in an application. The group ID is used to 1077
access the groups. The application.createGroup(String name, String description) method returns 1078
the group ID (gid in the method parameters). 1079

boolean addUserToGroup(String gid, String uid, String name)

This method can be used to add a user to a group.

© 2002 - 2004 Beam Jive Consulting 20.9.2004
 37 / 47

Parameters:

gid: The group ID of the group where the user should be added to
uid: The public ID of the user that will be added to the group
name: Name of the user in the group

Returns:
True if the user was successfully added to the group, false otherwise

boolean isInGroup(String gid, String uid)

This method can be used to check if a user has already joined a group.

Parameters:

gid: The group ID
uid: Public ID of the user

Returns:
True if the user is in the group, false if not

boolean removeUserFromGroup(String gid, String uid)

This method can be used to remove a user from a group

Parameters:

gid: The group ID

uid: The public ID of the user
Returns:

True if the user was removed, false if the user was not in the group

int getUserCount(String gid)

Get the number of members in a group

Parameters:

gid: The group ID

Returns:
Number of members in the group

void setProperty(String name, String value)

Set a property to the group

Parameters:

name: Name of the property to set
value: Value of the property to set

Returns:
Nothing

String getProperty(String name)

© 2002 - 2004 Beam Jive Consulting 20.9.2004
 38 / 47

Get a group property

Parameters:

name: Name of the property to get

Returns:
Value of the property or null if the property does not exist

void unsetProperty(String name)

Remove a property from the memory

Parameters:

name: Name of the property to remove

Returns:
Nothing

String getGroupName(String gid)

Get the human-readable name of a group

Parameters:

gid: The group ID
Returns:

The name of the group or null if the group does not exist

String getGroupDescription(String gid)

Get the description of a group

Parameters:

gid: The group ID
Returns:

The description or null if the group does not exist

 1080

18.3 The user object 1081

The user object can be used to control the properties of the client who did the request. 1082
 1083

String getPrivateID()

Get the private ID of the user

Parameters:

None
Returns:

© 2002 - 2004 Beam Jive Consulting 20.9.2004
 39 / 47

The private ID

String getPublicID()

Get the public ID of the user

Parameters:

None

Returns:
The public ID

void setProperty(String name, String value)

Set a property that can be used only by the user (who sent the request). The property stays in
the memory until removed with a call to the unsetProperty method or until the user disconnects.

Parameters:

name: Name of the property to set
value: Value of the property to set

Returns:
Nothing

String getProperty(String name)

Get a user property

Parameters:

name: Name of the user property to set

Returns:
Value of the property or null if the property does not exist

void unsetProperty(String name)

Remove a property from the server memory

Parameters:

name: Name of the property to remove
Returns:

Nothing

void receiveLogMessages(boolean receive)

When called with true parameter, the user will receive all log messages in the application.

Parameters:

receive: When true, the user will receive log messages. When false, the user will not
receive the log messages.

Returns:
Nothing

© 2002 - 2004 Beam Jive Consulting 20.9.2004
 40 / 47

void drop()

Closes the connection for the given user.

Parameters:
Returns:

Nothing

void ban()

Adds the users to the list of banned users (uses the IP address of the user) and closes the
connection.

Parameters:

None
Returns:

Nothing

String getIP()

Returns the IP address of the user.

Parameters:

None

Returns:
IP address of the user

String getHost()

Returns the hostname of the user.

Parameters:

None
Returns:

Host name of the user

 1084

18.4 The request object 1085

The request object can be used to read the request variables. 1086
 1087

String getVar(String name)

Get the value of a request variable

Parameters:

name: Name of the request variable to get

© 2002 - 2004 Beam Jive Consulting 20.9.2004
 41 / 47

Returns:
Value of the request variable or null if the variable is not set

boolean isSet(String name)

This method can be used to test if a request variable exists

Parameters:

name: Name of the request variable
Returns:

True if the request variable is set, false otherwise

 1088

18.5 The response object 1089

The response object is used to create the response message and to control the output. 1090
 1091

void startNode(String name)

Starts a new XML node.

Parameters:

name: Name of the XML node that is being created
Returns:

Nothing

void setAttribute(String name, String value)

Add an attribute to the lastly added node. Notice that the startNode method should be called
before this. This method will not add an attribute to the root node of the response message.

Parameters:

name: Name of the attribute to set
value: Value of the attribute

Returns:
Nothing

void endNode(String name)

Create an end node to the response message. For example, the method call
response.endNode(“MyNode”) would add </MyNode> to the response message.

Parameters:

name: Name of the end node
Returns:

Nothing

void addData(String data)

© 2002 - 2004 Beam Jive Consulting 20.9.2004
 42 / 47

Add character data to the response message.

Parameters:

data: Any character data

Returns:
Nothing

void addCData(String data)

Add character data to the response message. Wraps the data inside of a CDATA block. This
can be used for example when HTML data has to be added to the response. The XML parsers
will not try to parse the CDATA block, therefore the XML document remains valid.

Parameters:

data: Any character data
Returns:

Nothing

void addRSNode(String name, ResultSet rs)

Converts the Java ResultSet object to XML and appends it to the response. The resulting XML
data will look like the following:

<NAME>
 <ROW>
 <COL NAME=”mycol”><![CDATA[yourvalue]]></COL>
 </ROW>
</NAME>

Where the NAME tag is what you pass to the method. The attribute NAME of the COL tag is the
column name. The actual field data is placed between the COL tags and a CDATA section.

Parameters:

name: Name of the result set
rs: A ResultSet object that contains query results

Returns:
Nothing

void addGroupList()

Adds a list of groups to the response message. The resulting XML will look like the following
(there are two groups in this case):

<GROUP ID=”a65d76ad65f65f65451b3123” NAME=”My Group1” USERS=”4”>
 The description of the group
</GROUP>
<GROUP ID=”cd786c778a8745c7aad35d54” NAME=”My Group2” USERS=”53”>
 The description of the group number 2
</GROUP>

© 2002 - 2004 Beam Jive Consulting 20.9.2004
 43 / 47

Parameters:

None
Returns:

Nothing

void addUsersInGroup(String gid)

Adds a list of users in the group to the response message. The group is defined by the
parameter gid.

Parameters:

gid: Group ID
Returns:

Nothing

void addUserList()

Add a list of all users in the application. This method lists all users who have registered to the
application by using the application.register() method.

Parameters:

None
Returns:

Nothing

void send()

A call to the method will signal the server that the generated XML response message should be
sent back to the user who sent the request. It does not matter at which point the method is
called, the response is always sent when all code has been executed.

Parameters:
None

Returns:
Nothing

void sendUser(String uid)

A call to this method will cause the server to send the XML response message to another user
as a push message. The user is identified by the uid parameter, which is the public ID of a user.

Parameters:

uid: The public ID of the user that the message will be sent
Returns:

Nothing

void sendGroup(String gid)

The generated XML response message will be sent to all users in the group that is defined by

© 2002 - 2004 Beam Jive Consulting 20.9.2004
 44 / 47

the gid parameter. The message will not be sent to the sender even if he/she is part of the
group.

Parameters:

gid: The group ID
Returns:

Nothing

void sendAll()

Send the XML response message to all users in the application. The message will be sent to
those users who have registered with the application by using the application.register() method.
The message will not be sent to the sender.

Parameters:

None
Returns:

Nothing

 1092

18.6 The logger object 1093

The logger object can be used to efficiently write log messages to the applications log file (located 1094
in the logs directory of the application). A normal file access is very slow. The log method uses a 1095
threaded logger. 1096
 1097

void log(String msg)

Append the message to the log file of the application. This method produces timestamp
automatically. The timestamp is in dd.mm.yyyy hh:mm:ss format.

Parameters:
msg: Any log message

Returns:
Nothing

 1098

18.7 The database object 1099

The database object can be used to execute database queries and updates. 1100
 1101

ResultSet runQuery(String con, String sql)

Executes a SELECT query defined by the sql parameter. The query uses the pooled database
connections that can be defined in a configuration file.

Parameters:

© 2002 - 2004 Beam Jive Consulting 20.9.2004
 45 / 47

con: A valid connection name in the db_connection.xml file
sql: An SQL SELECT statement

Returns:
ResultSet object containing the query results, or null if the query failed

void runUpdate(String con, String sql)

Executes an update operation (UPDATE, INSERT or DELETE) to the database.

Parameters:

con: A valid connection name in the db_connection.xml file
sql: An SQL statement

Returns:
If the update operation succeeds, the method returns the number of rows modified. If
the operation fails, the method returns one of the following negative error codes:
-1: Unknown error in the query
-2: The connection was not found

-3: Unable to connect to the database

Connection getConnection(String name)

Returns a java.sql.Connection object from the database connection pool. The connections are
automatically returned to the pool once the processContent method has been executed.

Parameters:

name: Name of the connection (specified in the db_connections.xml)
Returns:

Open connection to a database or null if the connection is not available

 1102

18.8 The pool object 1103

The pool object can be used to store any Java objects in the server memory. The objects are 1104
stored until removed with the unsetObject method or until the user disconnects. Every user has 1105
one object pool and it cannot be shared between the applications or other users. The object 1106
pooling is more efficient than serializing the objects to the hard drive. 1107
 1108

void setObject(String name, Object o)

Adds new object to the pool. The object may be any Java object, for example Long or ResultSet.

Parameters:

name: Name of the object to set
o: Object to set

Returns:
Nothing

© 2002 - 2004 Beam Jive Consulting 20.9.2004
 46 / 47

Object getObject(String name)

Get an object from the object pool. You may need to cast the object to the type of your object.
For example, if you have added an object of the type Long to the object pool, you need to cast
the object like in the following:

Long myLong = (Long) pool.getObject(“myLongInThePool”);

Parameters:

name: Name of the object to get
Returns:

The object, or null if the object does not exist.

boolean isSet(String name)

Check the existence of an object in the object pool.

Parameters:

name: The name of the object to check

Returns:
True if the object exists in the pool, false otherwise.

void unsetObject(String name)

Removes an object from the pool.

Parameters:

name: Name of the object to remove
Returns:

Nothing

© 2002 - 2004 Beam Jive Consulting 20.9.2004
 47 / 47

Version history 1109

Version Date Author Description

1.0 18.12.2003 Kai Hannonen First version

1.1 21.4.2004 Kai Hannonen Fixed typos, changed the
response.addGroupList method
description.

1.2 2.8.2004 Kai Hannonen Added new descriptions for new
methods.

1.3 10.9.2004 Kai Hannonen Added references to the Java Offbeat
client

1.4 20.9.2004 Kai Hannonen Added a chapter about the Flash cross-
domain policy files

 1110

