Offbeat
FLASH CLIENT MANUAL

Beam Jive Consulting

© 2002 - 2004 Beam Jive Consulting 9.9.2004
1/18

Table of contents

1 INEPOAUCTION ... ettt ettt et ettt et et ettt e et ne e s 3
1.1 ADOUL the AOCUMENT ...ttt er e ettt n e 3
1.2 What can | do with the Offbeat server and Flash Client? ... 3
1.3 What can 1 N0t do WIth i1t 3
1.4 HOW dOES I WOTK? ..ttt e st 3

141 COMMUNICALION ..ottt ettt ee e se e ee e s ettt ere s 3
1.4.2 The communiCation MOGE! ... e e e e 3

2 Installing the client COMPONENTS. ..o e e e e 5

3 How to use the client COMPONENT ...t 6

4 ConNNECHON NANAING ... ittt et s ee e ettt e e s 7
41 Defining NOSt @nd POIt ..o 7
4.2 Settings the callback FUNCHONSoc.ioiiii e e e 7
4.3 OpPeNiNg the CONNECTION ... e et eee e 8
4.4 ClosiNg the CONNECHION ..o ettt 8

I S 1= 10 To 1 o I €= o [U LTS3 (PP P PROPPPPP 9

6 RECEIVING MESSAGES ... cuveueeitietiereeiee ettt ettt st s e se e ee e e s s e et 10
6.1 LC LT o =T | TSP P PRSPPI 10
6.2 Receiving Normal reSpONSE MESSATEScvevererrerrerrerreereere et e st seesesesesresreese e eneeeens 10
6.3 ReCeiVINg PUSH MESSAGES ...cuververieieeeieeieeie ettt ettt er e et re et ne e 11
6.4 Receiving client diSCONNECE MESSAGESvoveveieieierie ettt 11
6.5 ReCEIVING [0g MESSATES ...c.veveriertiirieieeieerie ettt ettt ettt b b sreeresreene e e 12
6.6 Receiving acknowledgement MESSAJES.oouuierrererereneere e sre e e 12
6.7 [F=Ta o [T To =14 (o] =TRSOOSR 12

7 Methods and Property lISTINGo e e e e e 13

VEISION NISTONY ..ttt ettt b bbb b b et e st e b e be s be s s e s e ebeeneenee e s 18

© 2002 - 2004 Beam Jive Consulting 9.9.2004

2/18

28

29
30
31

32
33

34

35
36
37
38
39
40
41
42
43
44
45

46

47
48

49

50

51
52
53
54

55

56
57
58
59
60

61

62
63
64

1 Introduction

1.1 About the document

The purpose of this document is to introduce you to the Offbeat Flash client. All examples are in
the ActionScript 2 (Flash MX 2004 and Flash MX 2004 Professional) format.

It is recommended to read also the Offbeat Manual, which describes the protocol and the
concepts of the server side programming with the Offbeat server.

1.2 What can | do with the Offbeat server and Flash Client?
With Offbeat server and Flash Client, it is possible to:

Create data driven applications

Create communication applications (chats, whiteboards...)

Create controlling and monitoring applications
o computer monitoring and remote control
o software monitoring and remote controlling
o device monitoring and controlling
o real-time statistics

Any kind of distributed systems

1.3 What can | not do with it?

It is not possible to create video or voice communication applications with the Offbeat server. For
file uploads and file downloads, some HTTP-server should be used.

1.4 How does it work?

1.4.1 Communication

The Offbeat server is a TCP socket server that uses XML as the communication protocol. In a
TCP socket connection, the client-server connection, unlike in HTTP, is continuously open. This
means that the client may receive data from the server as push messages. This makes it possible
to create real-time communication applications, such as chats and whiteboards.

The response times are very fast when there is no latency of creating the connection for each
request. A typical round-trip time (send request -> process request -> receive response) for an
Offbeat request is only a few milliseconds. The fastest round-trip times in the tests were as small
as one millisecond. This means that the client may send up to 1000 requests in one second
(depends on the hardware and the application design).

1.4.2 The communication model

The Offbeat communication model is based on a request-response model. A server programmer
creates a server application, which consists of one or more Java class files. The Offbeat Flash
Client can then call the server applications. It is possible to send variables to the server

© 2002 - 2004 Beam Jive Consulting 9.9.2004
3/18

65
66

67

68
69
70
71

72
73
74
75
76
77
78
79
80

application. The server application can read the request variables and create the response
message dynamically. The response messages are always XML documents.

The Offbeat Flash client uses an asynchronous communication model (just as most of the Flash
communication objects). This means that you always define a handler function for the response
messages. You can process the response as soon as it is received from the server. There are six
types of messages defined in the Offbeat protocol (see the Offbeat manual for more details):

e Requests

e Responses

e Push messages

e (Client disconnect messages
e Log messages

e Acknowledgement messages

There are detailed descriptions of each message type in the following chapters.

© 2002 - 2004 Beam Jive Consulting 9.9.2004
4/18

81

82
83
84
85
86

2 Installing the client components

The Offbeat Flash Client component can be installed by using the Macromedia Extension
Manager application that is freely available from the Macromedia web site. The installation can be
done by clicking the .mxp. This will automatically start the Macromedia Extension Manager and
install the component. When Flash is restarted, the component will appear in the Components
panel.

© 2002 - 2004 Beam Jive Consulting 9.9.2004
5/18

87

88
89
90
91

92

93

94
95
96

97

98
99
100

101

102
103
104
105
106
107
108
109
110
111
112

3 How to use the client component

After installing the Offbeat Flash Client component successfully, it will appear in the Components
panel of your Flash authoring environment. The client component can then be dragged on to the
stage and the client component properties can be adjusted from the component properties panel.
The component properties are explained in the following table:

Property Description

Host The host name or IP address of the computer where the Offbeat server is
running. The default value is 127.0.0.1, which connects to the localhost
(same computer).

Port The port number of the Offbeat server. The default value is 8384. Please
note that the Flash clients are not able to connect to ports below 1024
without a policy file.

onConnect The function that will be called when the connection has been established
with the server. The function takes one Boolean argument, which tells if the
connection was made successfully.

onClose The function that is called when the connection is closed (or lost).

onPushMessage A function that is called when a push message is received from the server.

onClientDisconnect

A function that is called when a client has disconnected from the server. To
get these messages, you need to register with the application.

onLogMessage

A function that is used to handle the incoming log messages.

When the component is on the stage, you should give it an instance name. The instance name is
used to control the connection. To assign an instance name to the client, select the component
on the stage and write a descriptive name to the Component text box in the Properties panel.

The component can be used also directly from ActionScript. To accomplish this, drag the
component to the stage and delete it. This will add the component to your project’s library. After
that you would create a new client by writing:

// Create new client

var myClient

= new com.bjc.offbeat.OffbeatClient (“127.0.0.1"”, 8384);

// Define handler functions
myClient .onPushMessage = “myOnPushMessage”;
myClient .onConnect = “myOnConnect”;

// Connect to the server
myClient .connect () ;

© 2002 - 2004 Beam Jive Consulting 9.9.2004

6/18

113

114
115

116

117
118
119
120

121
122

123
124

125

126

127
128

129

130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

4 Connection handling

This chapter will show you how to connect to a server, how to close the connection and how to
handle the events correctly.

4.1 Defining host and port

To connect to Offbeat server, you need to know the correct host and port. Host is the IP address
or the host name of the computer where the Offbeat server is running. Port is the port number
that the server is listening. If the Offbeat server is on the same computer with the client, the host
should be 127.0.0.1 or localhost.

The host and port parameters can be set from the Properties panel or with ActionScript. The
following code shows how to define the host and port parameters with ActionScript:

var myConn:0ffbeatClient = new OffbeatClient (“127.0.0.1”, 8384);

4.2 Settings the callback functions

The callback functions (handler functions) can be set from the component properties panel or by
using ActionScript. The following code listing shows how to define the callbacks with ActionScript:

myConn.onConnect = “myOnConnect”;

myConn.onClose = “myOnClose”;

myConn.onPushMessage = “myPushHandler”;
myConn.onLogMessage = “myLogHandler”;
myConn.onClientDisconnect = “myOnClientDisconnect”;

function myOnConnect (success:Boolean):Void
{
// The connection is OK
if (success)
{
}
// Connection failed
else
{
}
}

function myOnClose () :Void

{

trace(“Connection was closed”);

}

function myPushHandler (data:XML, file:String, clientID:String) :Void
{
// Handle push message

}

function myLogHandler(msg:String) :Void
{

trace(“I got a log message: “ + msg);

© 2002 - 2004 Beam Jive Consulting 9.9.2004
7/18

161
162

163
164
165
166

167

168
169

170
171

172

173
174

175

176
177
178

179
180

function myOnClientDisconnect (clientID:String, clientName:String) :Void

{

// A client has disconnected, remove from lists etc...

}

4.3 Opening the connection

When the handler functions have been set, it is time to open the connection. The connection can
be opened simply by calling the connect() method. The following example show how to do it:

myConn.connect () ;

When the connection has been opened, the client will automatically call the handler function
specified in the onConnect variable.

4.4 Closing the connection

To close an open connection, the close() method should be called. A call to the close() method
will close the connection and call the handler function defined in the onClose property. The
following code shows how to call the close() method:

myConn.close () ;

© 2002 - 2004 Beam Jive Consulting 9.9.2004
8/18

181

182
183
184

185

186
187

188

189
190
191
192

193

194
195
196
197

198

199
200
201
202

203

204
205

206

207
208

5 Sending requests

The requests are used to call an application on the server. The connection should be opened
before sending the first request. It is possible to pass data to the server application by setting
request variables. In the following example we send a basic request to the server:

var req = myConn.newRequest (myHandler, “MyApp/MyFile.xma”);
myConn.send(req);

In the example we sent a request to the application MyApp’s file called MyFile.xma. In the server,
there is an application called MyApp that contains a Java class file called MyFile.class. The file
extension .xma has to be used when calling the server applications. The first parameter
‘myHandler’ is the function that will be called when the response arrives from the server.

It can be seen, that the connection object is used to create a new request. The method
newRequest creates a new com.bjc.offbeat. XMLRequest object that will be converted to XML and
sent to the server. The setVar(name:String, value:String) method of the XMLRequest class can
be used to set request variables. The following example shows how set request variables:

var req = myConn.newRequest (saveHandler, “News/SaveNews.xma”);
req.setVar (“title”, “Offbeat is a server”);

req.setVar (“text”, “Offbeat really is a server!”);
myConn.send(req);

In the server application, the request variables can be read, and the news can be saved to a
database.

If there is no need to set the handler function, the parameter may be an empty string. This is the
case in many chat-like applications.

© 2002 - 2004 Beam Jive Consulting 9.9.2004
9/18

209

210

211
212
213

214

215
216
217
218
219

220

221
222

223

224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243

244

245
246
247
248
249

250

251
252
253
254
255

6 Receiving messages

6.1 General

There are five different kind of messages that a Offbeat Flash Client can receive. The most
common type of message to receive is a response message. Response messages are generated
on the server on your request. Push messages come from other clients.

6.2 Receiving normal response messages

Normal response messages a reply messages to your requests. The response messages are
generated on the server by server applications. The response messages are always XML
documents. The response may contain any data. The response message may contain for
example database query results or a server generated timestamp or what ever you decide to add
to the response message on the server.

A response message is handled in the handler function that was defined in the request. The
following example shows how to send a request and how to handle the response:

// Send some request

function sendRequest () :Void

{
var req = myConn.newRequest (myHandler, “Test/Testl.xma”);
myConn.send(req);

}

// The handler function
function myHandler (response:XML, errors:Number) :Void
{
if (errors == 0)
{
// Do something with the data ...
}
// There are errors, handle correctly
else
{
// Do some error handling (loop though the errors)

}

The first parameter to the handler function contains the XML formatted response message. The
second parameter, errors, contains the number of error that occurred when generating the
response on the server. If errors variable is zero, the response is OK and it can be processed. If
there is one or more errors in the response, the error can be handled and an appropriate error
message can shown to the user. There are two errors in the following response message:

<?xml version="1.0" encoding="UTF-8"?>

<MSG TYPE="0" FILE="metafile.xma" REQUEST_ID="123123" ERRORS="2">
<ERROR CODE="0">Error description 1</ERROR>
<ERROR CODE="3">Error description 2</ERROR>

</MSG>

© 2002 - 2004 Beam Jive Consulting 9.9.2004
10/18

256

257

258
259
260
261

262

263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285

286

287
288
289
290
291
292

293

294
295
296
297
298
299

300

301
302
303
304
305
306

307

6.3 Receiving push messages

The push messages are also generated by the server. The push messages are always sent by
some other client that is using the same application. The push messages are also XML
documents that can be handled in the same manner as the normal response messages. The
following example show how to handle push messages:

// Set the push message handler
myConn.onPushMessage = “myPushHandler”;

// ... open connection etc ...

// The handler function
function myPushHandler (data:XML, file:String, clientID:String) :Void
{
switch(file)
{
case “myServerFilel.xma”:
// Do something with the message
break;

case “myOtherServerFile.xma”:
// Do something
break;

default:
// No handler specified, do nothing
break;

By looking the code listing above, it can be seen that there are three variables that can be used to
handle the push message. The first parameter, data, contains the push message data in XML
object. The second parameter, file, can be used to check which server file generated the push
message. The third parameter, clientlD, is the unique client ID of the user who sent the message.
If you have got a list of users from the server earlier, the client ID can be used to resolve for
example the name of the sender.

6.4 Receiving client disconnect messages

The client disconnect messages are automatically generated by the Offbeat server when a client
disconnects (or loses the connection). To receive the client disconnect messages, client has to
register with an application. This can be done on the server application by calling:
application.register(String name). This feature can be used to remove disconnected clients from
lists etc. The following example shows how to set the handler function and how to handle the
incoming disconnect messages:

myConn.onClientDisconnect = “myOnClientDisc”;

function myOnClientDisc(clientID:String, clientName:String) :Void

{

// Remove client from lists etc..

}

© 2002 - 2004 Beam Jive Consulting 9.9.2004
11/18

308

309

310
311
312
313

314

315
316
317
318
319
320
321
322

323

324
325
326
327

328

329
330
331

332

333
334

6.5 Receiving log messages

A client can receive log messages that are generated in the server application. On the server, the
method user.receiveLogMessages(true), has to be called. This makes it easy to create simple
monitoring features to applications. The following example shows how to set the property and
how to define the handler function for incoming log messages:

// Set the callback for log message handler
myConn.onLogMessage = “myOnLog”;

// Define the handler function
function myOnLog (msg:String) :Void
{
trace(“I received one log message: “ + msg);

}

6.6 Receiving acknowledgement messages

Acknowledgement messages are generated and sent by the server when the response message
is not sent to the client who did the request. For example, if you send a chat message to another
user, the server application probably will not send the same message back to you. The server
sends an acknowledgement message back to you.

You do not have to do anything with the acknowledgement messages, they are used internally in
the Offbeat clients. When you use the Offbeat Flash Client debug feature, you may see
acknowledgement messages tracing to the output window.

6.7 Handling errors

Only the normal response messages may contain errors. The push messages will not be sent if
an exception or error occurs in the server application.

© 2002 - 2004 Beam Jive Consulting 9.9.2004
12/18

335

7 Methods and property listing

OffbeatClient(host:String, port:Number) : Void

The constructor of the class. Creates a new instance of the OffbeatClient class. Can be used in
the following way:

var myConn = new com.bjc.offbeat.OffbeatClient (“127.0.0.1"”, 8384);

Please notice that the name of this class was XMLClient in the first beta version.

Parameters:
host: Host name or IP address of the Offbeat server
port: The Offbeat server port number

Returns:
Nothing

OffbeatClient.send(request:XMLRequest) : Boolean

Sends a request to the Offbeat server. The following example shows how the request can be
sent through an open connection:

// First create a request

myRequest = myClient .newRequest (myCallback, “theFile.xma”);
// Then send it

myClient .send(myRequest);

Parameters:

request: The request object that will be sent to the server
Returns:

True if the sending succeeds, false otherwise

OffbeatClient.newRequest(cbk:Function, file:String) : XMLRequest

Get a new request object. The OffbeatClient initializes the request object so that it is ready to be
used.

Parameters:

cbk: The callback function that will be called on the response

file: Name of the file that is called. The file extension should be .xma.
Returns:

New XMLRequest object

OffbeatClient.connect() : Void

Connect to the server. When the connection has been established, the OffbeatClient will call the

© 2002 - 2004 Beam Jive Consulting 9.9.2004
13/18

method that is specified in the onConnect property.

Parameters:
None

Returns:
Nothing

OffbeatClient.close() : Void

Closes the connection to the server. Calls the method that is defined in the onClose property of
the OffbeatClient object.

Parameters:
None

Returns:
Nothing

OffbeatClient.isConnected() : Boolean

Can be used to check if the connection to the server is open.

Parameters:
None
Returns:
True if the connection is open, false if the connection is closed.

OffbeatClient.onPushMessage : String

A property that can be used to define the function that is called when a push message has been
received. The push message handler function should always take three parameters: data:XML,
file:String, clientlD:String. The following code listing shows the basic way to set the push
message function:

// Set the push message handler
myConn.onPushMessage = “myPushHandler”;

// ... open connection etc ...

// The handler function
function myPushHandler (data:XML, file:String, clientID:String) :Void
{
switch(file)
{
case “myServerFilel.xma”:
// Do something with the message
break;

case “myOtherServerFile.xma”:
// Do something
break;

default:
// No handler specified, do nothing

© 2002 - 2004 Beam Jive Consulting 9.9.2004
14/18

break;

}

OffbeatClient.onConnect : String

With this property it is possible to set a callback function that is called after the connection has
been made. The callback function takes one Boolean parameter that tells if the connection was
successfully opened or not. The following example shows how the property should be set and
also the format of the callback function.

// Set the callback
myConn.onConnect = “myOnConnect”;
// Connect

myConn.connect () ;

// The callback function
function myOnConnect (success:Boolean) :Void
{

if (success)

{
// The connection is now open

}
else
{
// Failed to create the connection

}

OffbeatClient.onClose : String

By setting this property, it is possible to call a function when the connection is closed. The
callback function will be called also when the OffbeatClient.close() method is called. The
following example shows how to set the property and how to define the onClose callback
function:

myConn.onClose = “myOnClose”;

// The callback
function myOnClose ()
{
// The connection was closed

}

OffbeatClient.onClientDisconnect : String

Property that can be used to define a callback method that will be called when a client
disconnect message has been received. The Offbeat server sends the client disconnect
messages automatically to all clients who have registered to the same application as the
disconnecting client (See the Offbeat user manual for further details). The following example
shows how to set the property and how to define the callback function.

myConn.onClientDisconnect = “myOnClientDisc”;

© 2002 - 2004 Beam Jive Consulting 9.9.2004
15/18

// The callback function
function myOnClientDisc(clientID:String, clientName:String) :Void
{

// A client has disconnected, remove from lists etc...

}

OffbeatClient.onLogMessage : String

This property can be set to handle incoming log messages. See the Offbeat user manual to find
out more about logging. The following example shows how to set the property and how to define
the callback function that handles the log messages:

myConn.onLogMessage = “myOnLog”;

// The log message handler function
function myOnLog (msg:String) :Void
{

// Show the message etc...

}

OffbeatClient.debug : Number

This property can be set to receive debug information from the OffbeatClient class. The debug
feature can be used only in the Flash design environment. It produces debug messages by
using the AS trace function. The default value of the property is 0 (no debugging). The debug
can be setto 1 and 2 to receive debug information. The debug level 1 shows only basic
information about the events, but the debug level 2 shows also the data that is handled.

OffbeatClient.filePrepend : String

A property that can be used to add text in front of all filenames that are used in the requests.
This is handy when the application directory may change. The following example shows how to
add a path to all requests:

myConn.filePrepend = “myAppDirectory/”;
// Request that will call file “myAppDirectory/myFile.xma”
myRequest = myConn.newRequest (myCbk, “myFile.xma”);

XMLRequest.setVar(name:String, value:String) : Void

The method can be used to set request variables. The request variables can be read by the

server application. The following example shows how to send information about a person to the
server application:

myRequest = myConn.newRequest (myCallback, “SavePerson.xma”);
// Set variables

myRequest.setVar (“first_name”, “John”);
myRequest.setVar (“last_name”, “Doe”);
// Send

myConn.send(myRequest);

Parameters:

© 2002 - 2004 Beam Jive Consulting 9.9.2004
16 /18

name: The name of the request variable to set

value: Value of the request variable to set
Returns:

Nothing

© 2002 - 2004 Beam Jive Consulting 9.9.2004
17/18

336

337

Version history

Version Date Author Description
1.0 7.1.2004 Kai Hannonen First version
1.1 9.9.2004 Kai Hannonen Changed the main class name to

OffbeatClient (used to be XMLClient).
Changed the OffbeatClient.newRequest
description (the parameter was changed
from String to Function type).

© 2002 - 2004 Beam Jive Consulting

9.9.2004
18/18

