
© 2002 - 2004 Beam Jive Consulting 21.9.2004
 1 / 23

JAVA CLIENT MANUAL

Beam Jive Consulting

© 2002 - 2004 Beam Jive Consulting 21.9.2004
 2 / 23

Table of contents 1

1 Introduction..3 2
1.1 About the document ..3 3
1.2 What can I do with the Offbeat server?..3 4
1.3 What can I not do with it?..3 5
1.4 How does it work? ...3 6

1.4.1 Communication ...3 7
1.4.2 The communication model ...4 8

2 Installing the client library...5 9
3 Compiling an application ..6 10
4 How to use the client library...7 11
5 Connection handling...8 12

5.1 Defining host and port ...8 13
5.2 Setting the callback methods..8 14
5.3 Opening the connection ..9 15
5.4 Closing the connection..9 16

6 Sending requests..10 17
7 Receiving messages ..11 18

7.1 General...11 19
7.2 Receiving normal response messages ..11 20
7.3 Receiving push messages ..12 21
7.4 Receiving client disconnect messages ..12 22
7.5 Receiving log messages ...13 23
7.6 Receiving acknowledgement messages..13 24
7.7 Handling errors ..13 25

8 Using the XML and Node classes ...14 26
8.1 General...14 27
8.2 Using the classes...14 28
8.3 You can use also your own XML parser ..15 29

9 com.bjc.offbeat.client.OffbeatClient class...16 30
10 com.bjc.offbeat.client.XmlRequest class ..19 31
11 com.bjc.offbeat.client.XML class ...20 32
12 com.bjc.offbeat.client.Node class..21 33
Version history ...23 34
 35

© 2002 - 2004 Beam Jive Consulting 21.9.2004
 3 / 23

1 Introduction 36

1.1 About the document 37

This document will show you how to work with the Offbeat Java client library. All classes will be 38
described and simple examples provided. 39
 40
It is recommended to read also the Offbeat Manual, which describes the protocol and the 41
concepts of the server side programming with the Offbeat server. 42

1.2 What can I do with the Offbeat server? 43

You can connect to the Offbeat server from Java applications and applets and from Flash 44
applications. The XML based protocol makes it possible to have only one server-side application 45
and use it from both Flash and Java. 46
 47

• Create data driven applications 48

• Create communication applications (chats, whiteboards…) 49

• Create controlling and monitoring applications 50

o computer monitoring and remote control 51
o software monitoring and remote controlling 52
o device monitoring and controlling 53
o real-time statistics 54

• Any kind of distributed systems 55
 56

1.3 What can I not do with it? 57

It is not possible to create video or voice communication applications with the Offbeat server. For 58
file uploads and file downloads, some HTTP-server should be used. 59

1.4 How does it work? 60

1.4.1 Communication 61

The Offbeat server is a TCP socket server that uses XML as the communication protocol. In a 62
TCP socket connection, the client-server connection, unlike in HTTP, is continuously open. This 63
means that the client may receive data from the server as push messages. This makes it possible 64
to create real-time communication applications, such as monitoring apps, chats and whiteboards. 65
 66
The response times are very fast when there is no latency of creating the connection for each 67
request. A typical round-trip time (send request -> process request -> receive response) for an 68
Offbeat request is only a few milliseconds. The fastest round-trip times in the tests were as small 69
as one millisecond. This means that the client may send up to 1000 requests in one second 70
(depends on the hardware and the application design). 71

© 2002 - 2004 Beam Jive Consulting 21.9.2004
 4 / 23

1.4.2 The communication model 72

The Offbeat communication model is based on a request-response model. A server programmer 73
creates a server application, which consists of one or more Java class files. The Offbeat Java and 74
Flash clients can then call the server applications. It is possible to send variables to the server 75
application. The server application can read the request variables and create the response 76
message dynamically. The response messages are always XML documents. 77
 78
The Offbeat Java client uses an asynchronous communication model and works almost in the 79
same way than the Flash client. This means that you always define a handler function for the 80
response messages. You can process the response as soon as it is received from the server. 81
There are six types of messages defined in the Offbeat protocol (see the Offbeat manual for more 82
details): 83
 84

• Requests 85

• Responses 86

• Push messages 87

• Client disconnect messages 88

• Log messages 89

• Acknowledgement messages 90
 91
There are detailed descriptions of each message type in the following chapters. 92

© 2002 - 2004 Beam Jive Consulting 21.9.2004
 5 / 23

2 Installing the client library 93

The Offbeat Java client is located in the <offbeat>/clients/java directory as a jar file 94
(OffbeatClient-vX_X_X.jar). You can use the client library if you have the file in your CLASSPATH 95
environment variable or it resides in the same directory with your application. 96
 97
One way to make the client library visible, is to copy it to following directory under your Java 98
distribution: <JAVA_HOME>/jre/lib/ext. 99

© 2002 - 2004 Beam Jive Consulting 21.9.2004
 6 / 23

3 Compiling an application 100

To compile a Java application that uses the Offbeat Java client library, you will need to have the 101
com.bjc.offbeat.client package in your CLASSPATH (see chapter 2). 102
 103
If you don’t have the package set in your CLASSPATH environment variable, you can still 104
compile your application if OffbeatClient-v1_0_0p.jar is available. Use the –classpath switch of 105
the javac tool to specify the location of the library. 106
 107

javac –classpath OffbeatClient-v1_0_0p.jar SimpleChat.java 108

© 2002 - 2004 Beam Jive Consulting 21.9.2004
 7 / 23

4 How to use the client library 109

After installing the Offbeat Server successfully, you can start using the client components. First 110
thing you will need to do in your Java application, is to import the library: 111

 112

import com.bjc.offbeat.client.*; 113

 114
Usually only one instance of the client is needed in application. The following code listing shows 115
how to create an instance of the OffbeatClient class: 116
 117
 118

import com.bjc.offbeat.client.*; 119
 120
// Your own class 121
public class MyClass 122
{ 123
 // Class constructor 124

public MyClass() 125
{ 126
 OffbeatClient ob = new OffbeatClient(this, “127.0.0.1”, 8384); 127
} 128

} 129

 130
In the previous example we created an instance of the OffbeatClient that will connect to localhost 131
(127.0.0.1) port 8384 when the connect method is called. 132
 133
The first parameter to the OffbeatClient class constructor is a reference to the object that will 134
contain all the event handler methods. Usually the keyword “this” should be used. We will discuss 135
this later in this document. 136
 137

© 2002 - 2004 Beam Jive Consulting 21.9.2004
 8 / 23

5 Connection handling 138

This chapter will show you how to connect to a server, how to close the connection and how to 139
handle the events correctly. 140

5.1 Defining host and port 141

To connect to Offbeat server, you need to know the correct host and port. Host is the IP address 142
or the host name of the computer where the Offbeat server is running. Port is the port number 143
that the server is listening. If the Offbeat server is on the same computer with the client, the host 144
should be 127.0.0.1 or localhost. 145
 146

OffbeatClient oc = new OffbeatClient(this, “127.0.0.1”, 8384); 147

 148

5.2 Setting the callback methods 149

The callback methods (event handler methods) should be set before the “connect” method is 150
called. The following code listing shows how to define the callbacks: 151
 152

public class MyClass 153
{ 154
 private OffbeatClient ob; 155
 156
 public MyClass() 157
 { 158
 ob = new OffbeatClient(this, “127.0.0.1”, 8384); 159
 160
 ob.onConnect = “myOnConnect”; 161
 ob.onClose = “myOnClose”; 162
 ob.onPushMessage = “myPushHandler”; 163
 ob.onLogMessage = “myLogHandler”; 164
 ob.onClientDisconnect = “clientDisconnect”; 165
 } 166
 167
 public void myOnConnect(boolean success) 168
 { 169
 // The connection is OK 170
 if(success) 171
 { 172
 } 173
 // Connection failed 174
 else 175
 { 176
 } 177
 } 178
 179
 public void myOnClose() 180
 { 181
 // Connection was closed 182
 } 183
 184
 public void myPushHandler(XML data, String file, StringclientID) 185
 { 186

© 2002 - 2004 Beam Jive Consulting 21.9.2004
 9 / 23

 // Handle push message 187
 } 188
 189
 public void myLogHandler(String msg) 190
 { 191
 // I got a log message! 192
 } 193
 194
 public void clientDisconnect(String clientID, String clientName) 195
 { 196
 // A client has disconnected, remove from lists etc... 197
 } 198

5.3 Opening the connection 199

When the handler functions have been set, it is time to open the connection. The connection can 200
be opened simply by calling the connect() method. The following example show how to do it: 201
 202

ob.connect(); 203

 204
When the connection has been opened, the client will automatically call the handler function 205
specified in the onConnect variable. 206

5.4 Closing the connection 207

To close an open connection, the close() method should be called. A call to the close() method 208
will close the connection and call the handler function defined in the onClose property. The 209
following code shows how to call the close() method: 210
 211

ob.close(); 212

© 2002 - 2004 Beam Jive Consulting 21.9.2004
 10 / 23

6 Sending requests 213

The requests are used to call an application on the server. The connection should be opened 214
before sending the first request. It is possible to pass data to the server application by setting 215
request variables. In the following example we send a basic request to the server: 216
 217

XmlRequest req = ob.newRequest(this, “handler”, “MyApp/MyFile.xma”); 218
ob.send(req); 219

 220
In the example we sent a request to the application MyApp’s file called MyFile.xma. In the server, 221
there is an application called MyApp that contains a Java class file called MyFile.class. The file 222
extension .xma has to be used when calling the server applications. The first parameter ‘this’ is a 223
reference to the object that contains the event handler method. The second parameter 224
‘myHandler’ is the function that will be called when the response arrives from the server. 225

 226
It can be seen, that the connection object is used to create a new request. The method 227
newRequest creates a new com.bjc.offbeat.XmlRequest object that will be converted to XML and 228
sent to the server. The setVar(String name, String value) method of the XmlRequest class can 229
be used to set request variables. The following example shows how set request variables: 230
 231

XmlRequest req = myConn.newRequest(this, “cbk”, “SaveNews.xma”); 232
req.setVar(“title”, “Offbeat is a server”); 233
req.setVar(“text”, “Offbeat really is a server!”); 234
myConn.send(req); 235

 236
In the server application, the request variables can be read, and the news can be saved to a 237
database. 238
 239
If there is no need to set the handler function, the parameter may be null. This is the case in 240
many chat-like applications. 241

© 2002 - 2004 Beam Jive Consulting 21.9.2004
 11 / 23

7 Receiving messages 242

7.1 General 243

There are five different kind of messages that a Offbeat Java Client can receive. The most 244
common type of message to receive is a response message. Response messages are generated 245
on the server on your request. Push messages come from other clients. 246

7.2 Receiving normal response messages 247

Normal response messages a reply messages to your requests. The response messages are 248
generated on the server by server applications. The response messages are always XML 249
documents. The response may contain any data. The response message may contain for 250
example database query results or a server generated timestamp or what ever you decide to add 251
to the response message on the server. 252

 253
A response message is handled in the handler function that was defined in the request. The 254
following example shows how to send a request and how to handle the response: 255
 256

// Send some request 257
public void sendRequest() 258
{ 259

XmlRequest req = myConn.newRequest(this, “myHandler”, “Test1.xma”); 260
myConn.send(req); 261

} 262
 263
// The handler method 264
public void myHandler(XML response, int errors) 265
{ 266
 if(errors == 0) 267
 { 268
 // Do something with the data ... 269
 } 270
 // There are errors, handle correctly 271
 else 272
 { 273
 // Do some error handling (loop though the errors) 274
 } 275
} 276

 277
The first parameter to the handler function contains the response message. The datatype of the 278
response parameter is com.bjc.offbeat.client.XML. The XML class comes with the Offbea Java 279
client and we will show how to use it later in this document. 280
 281
The second parameter, errors, contains the number of errors that occurred when generating the 282
response on the server. If errors variable is zero, the response is OK and it can be processed. If 283
there is one or more errors in the response, the error can be handled and an appropriate error 284
message can shown to the user. There are two errors in the following response message: 285
 286

<?xml version="1.0" encoding="UTF-8"?> 287
<MSG TYPE="0" FILE="metafile.xma" REQUEST_ID="123123" ERRORS="2"> 288

© 2002 - 2004 Beam Jive Consulting 21.9.2004
 12 / 23

 <ERROR CODE="0">Error description 1</ERROR> 289
 <ERROR CODE="3">Error description 2</ERROR> 290
</MSG> 291

 292

7.3 Receiving push messages 293

The push messages are also generated by the server. The push messages are always sent by 294
some other client that is using the same application. The push messages are also XML 295
documents that can be handled in the same manner as the normal response messages. The 296
following example show how to handle push messages: 297

 298

// Set the push message handler 299
myConn.onPushMessage = “myPushHandler”; 300
 301
// ... open connection etc ... 302
 303
// The handler function 304
public void myPushHandler(XML data, String file, String clientID) 305
{ 306
 if(file.equals(“myServerFile1.xma”)) 307
 { 308
 // Do something with the message 309
 } 310
} 311

 312
By looking the code listing above, it can be seen that there are three variables that can be used to 313
handle the push message. The first parameter, data, contains the push message data in XML 314
object. The second parameter, file, can be used to check which server file generated the 315
push message. The third parameter, clientID, is the unique public client ID of the user who sent 316
the message. If you have got a list of users from the server earlier, the client ID can be used to 317
resolve for example the name of the sender. 318

7.4 Receiving client disconnect messages 319

The client disconnect messages are automatically generated by the Offbeat server when a client 320
disconnects (or loses the connection). To receive the client disconnect messages, client has 321
to register with an application. This can be done on the server application by calling: 322
application.register(String name). This feature can be used to remove disconnected clients from 323
lists etc. The following example shows how to set the handler function and how to handle the 324
incoming disconnect messages: 325
 326

myConn.onClientDisconnect = “myOnClientDisc”; 327
 328
public void myOnClientDisc(String clientID, String clientName) 329
{ 330
 // Remove client from lists etc… 331
} 332

 333
 334

© 2002 - 2004 Beam Jive Consulting 21.9.2004
 13 / 23

7.5 Receiving log messages 335

A client can receive log messages that are generated in the server application. On the server, the 336
method user.receiveLogMessages(true), has to be called. This makes it easy to create simple 337
monitoring features to applications. The following example shows how to set the property and 338
how to define the handler function for incoming log messages: 339
 340

// Set the callback for log message handler 341
myConn.onLogMessage = “myOnLog”; 342
 343
// Define the handler function 344
public void myOnLog(String msg) 345
{ 346
 // I received one log message 347
} 348

7.6 Receiving acknowledgement messages 349

Acknowledgement messages are generated and sent by the server when the response message 350
is not sent to the client who did the request. For example, if you send a chat message to another 351
user, the server application probably will not send the same message back to you. The server 352
sends an acknowledgement message back to you. 353
 354
You do not have to do anything with the acknowledgement messages, they are used internally in 355
the Offbeat clients. When you use the Offbeat Client debug feature, you may see 356
acknowledgement messages coming from the server. 357

7.7 Handling errors 358

Only the normal response messages may contain errors. The push messages will not be sent 359
if an exception or error occurs in the server application. 360

© 2002 - 2004 Beam Jive Consulting 21.9.2004
 14 / 23

8 Using the XML and Node classes 361

8.1 General 362

The XML and Node classes in the com.bjc.offbeat.client package have been added to simplify the 363
application development. When you use the XML class, you don’t need to import any additional 364
parsers to your Java project. The XML class basically wraps one or more Node objects and 365
reflects the original XML document. 366
These classes may look familiar to all Flash developers they are very close to the ActionScript 367
XML object. 368

8.2 Using the classes 369

It is very easy to use the XML and Node classes. When you create a new XML object, you pass 370
in the XML data as String: 371
 372

XML myXML = new XML(“<node attr=”value”><second>data</node>”); 373

 374
Now, we would need a reference to the first node of the document, which is in this case the 375
<node> tag. You can use the “firstChild” variable to access the first node of the document: 376
 377

System.out.println(“My node name: “ + myXML.firstChild.getName()); 378

 379
And to print out the value of the attribute “attr”, you would write: 380
 381

System.out.println(“At: “ + myXML.firstChild.getAttribute(“attr”)); 382

 383
Next thing we need to know is how to loop through all the childNodes of the node tag. We can 384
use the “length” variable of the node: 385
 386

for(int i = 0; i < myXML.firstChild.length; i ++) 387
{ 388
 System.out.println(“node: “ + i); 389
} 390

 391
Now it is important to notice that you can use the XML object with the Node object. For example, 392
the myXML.firstChild in the previous example is indeed a Node object. 393

Each of the node objects have also an array of Node objects called “childNodes”. To loop 394
through all the nodes inside of the root node, you could write: 395
 396

for(int i = 0; i < myXML.firstChild.length; i ++) 397
{ 398
 Node currentNode = myXML.firstChild.childNodes[i]; 399
 System.out.println(“Node: “ + currentNode.getName()); 400

© 2002 - 2004 Beam Jive Consulting 21.9.2004
 15 / 23

} 401

 402

8.3 You can use also your own XML parser 403

It is also possible to use any other XML parser than the built-in XML object. In the earlier 404
chapters, you have noticed that the XML documents to the responses and push messages are 405
passed as com.bjc.offbeat.client.XML. If you want to pass the XML document as a String to the 406
event handler methods, just set the “mode” variable of the OffbeatClient object to false: 407
 408

OffbeatClient obc = new OffbeatClient(this, “127.0.0.1”, 8384); 409
obc.mode = false; // true would use the XML objects... 410

 411
If the mode has been set to false, you should also change the event hander method signatures: 412
 413

// The handler method – the first parameter is String 414
public void myHandler(String response, int errors) 415
{ 416
 if(errors == 0) 417
 { 418
 // Do something with the data ... 419
 } 420
 // There are errors, handle correctly 421
 else 422
 { 423
 // Do some error handling (loop though the errors) 424
 } 425
} 426
 427
// The push message handler method – mode is false... 428
public void myPushHandler(String data, String file, String clientID) 429
{ 430
 if(file.equals(“myServerFile1.xma”)) 431
 { 432
 // Do something with the message 433
 } 434
} 435
 436

 437
 438

© 2002 - 2004 Beam Jive Consulting 21.9.2004
 16 / 23

9 com.bjc.offbeat.client.OffbeatClient class 439

Class that handles the connections, requests and responses. This class is used with the 440
XmlRequest class. 441
 442

void OffbeatClient(Object baseObject, String host, int port)

The constructor of the class. Creates a new instance of the OffbeatClient class. Can be used in
the following way:

OffbeatClient myConn = new OffbeatClient(this, “127.0.0.1”, 8384);

Parameters:

baseObject: A reference to the object that contains the event handler methods
host: Host name or IP address of the Offbeat server
port: The Offbeat server port number

Returns:
Nothing

void send(XmlRequest request)

Sends a request to the Offbeat server. The following example shows how the request can be
sent through an open connection:

// First create a request
myRequest = myClient.newRequest(this, “myCallback”, “theFile.xma”);
// Then send it
myClient.send(myRequest);

Parameters:
request: The request object that will be sent to the server

Returns:
nothing

XmlRequest newRequest(Object cbkObj, String cbk, String file)

Get a new request object. The OffbeatClient initializes the request object so that it is ready to be
used.

Parameters:

cbkObj: Object that contains the callback method (the second parameter)
cbk: The callback function that will be called on the response
file: Name of the file that is called. The file extension should be .xma.

Returns:

© 2002 - 2004 Beam Jive Consulting 21.9.2004
 17 / 23

New XmlRequest object

boolean connect()

Connect to the server. When the connection has been established, the OffbeatClient will call the
method that is specified in the onConnect property.

Parameters:

None
Returns:

True if the connection can be opened, false otherwise

void close()

Closes the connection to the server. Calls the method that is defined in the onClose property of
the OffbeatClient object.

Parameters:

None
Returns:

Nothing

boolean isConnected()

Can be used to check if the connection to the server is open.

Parameters:

None
Returns:

True if the connection is open, false if the connection is closed.

String onPushMessage

A property that can be used to define the function that is called when a push message has been
received. The push message handler function should always take three parameters: data:XML,
file:String, clientID:String.

String onConnect

With this property it is possible to set a callback function that is called after the connection has
been made. The callback function takes one Boolean parameter that tells if the connection was
successfully opened or not.

String onClose

By setting this property, it is possible to call a function when the connection is closed. The
callback function will be called also when the OffbeatClient.close() method is called.

String onClientDisconnect

© 2002 - 2004 Beam Jive Consulting 21.9.2004
 18 / 23

Property that can be used to define a callback method that will be called when a client
disconnect message has been received. The Offbeat server sends the client disconnect
messages automatically to all clients who have registered to the same application as the
disconnecting client (See the Offbeat user manual for further details).

String onLogMessage

This property can be set to handle incoming log messages. See the Offbeat user manual to find
out more about logging.

int debug

This property can be set to receive debug information from the OffbeatClient class. It produces
debug messages by calling the System.out.println method. The default value of the property is 0
(no debugging). The debug can be set to 1 and 2 to receive debug information. The debug level
1 shows only basic information about the events, but the debug level 2 shows also the data that
is handled.

String filePrepend

A property that can be used to add text in front of all filenames that are used in the requests.
This is handy when the application directory may change. The following example shows how to
add a path to all requests:

myConn.filePrepend = “myAppDirectory/”;
// Request that will call file “myAppDirectory/myFile.xma”
myRequest = myConn.newRequest(myCbk, “myFile.xma”);

© 2002 - 2004 Beam Jive Consulting 21.9.2004
 19 / 23

10 com.bjc.offbeat.client.XmlRequest class 443

This class is used only to send new requests to the server. You never call the class constructor, 444
instead you create a new XmlRequest object by calling the newRequest method of the 445
OffbeatClient. 446
 447

void setVar(String name, String value)

Set a variable to the request.

XmlRequest xr = myConn.newRequest(this, “handleResult”, “File.xma”);
xr.setVar(“name”, “John”);
xr.setVar(“age”, “34”);
myConn.send(xr);

Parameters:

name: Name of the variable to set

value: Value of the variable to set
Returns:

Nothing

© 2002 - 2004 Beam Jive Consulting 21.9.2004
 20 / 23

11 com.bjc.offbeat.client.XML class 448

A class that makes it easier to handle XML documents in Java applications. The XML class wraps 449
XML documents as Java objects. 450

 451

XML(String document)

The constructor of the class. Creates a new instance of the XML class. Can be used in the
following way:

String myDocument = new String(“<node>data</node>”);
XML myxml = new XML(myDocument);

Parameters:

document: XML document
Returns:

Nothing

Node firstChild

Contains a reference to the first node (root node) of the XML document. Can be used with the
Node class to make code look cleaner:

String myDocument = new String(“<node>data</node>”);
XML myxml = new XML(myDocument);

Node mynode = myxml.firstChild;

© 2002 - 2004 Beam Jive Consulting 21.9.2004
 21 / 23

12 com.bjc.offbeat.client.Node class 452

This class is used by the XML class. Represents one node and its subnodes in an XML 453
document. This class should be used only with the XML class, you should never call the 454
constructor of this class. 455
 456

String getAttribute(String name)

Returns the value of an attribute in the node. Following code listing shows how to get the name
attribute of the first node in XML document:

String myDocument = new String(“<node name=”tester”>data</node>”);
XML myxml = new XML(myDocument);

System.out.print(myxml.firstChild.getAttribute(“name”));
// Prints ‘tester’

// Or...
Node mynode = myxml.firstChild;
System.out.print(mynode.getAttribute(“name”));
// Prints ‘tester’

Parameters:

name: Name of the attribute to get
Returns:

Value of the attribute, or null if the attribute does not exist

String getValue()

Returns the character data in the node. If the Node has child nodes, they are not included. The
following code shows how to read and output the data in the node:

String myDocument = new String(“<node name=”tester”>data</node>”);
XML myxml = new XML(myDocument);

System.out.print(myxml.firstChild.getValue());
// Prints ‘data’

Parameters:

none

Returns:
Data in the node as String

Node firstChild

A reference to the first child node. Value is null if the Node does not have any child nodes.

Node[] childNodes

© 2002 - 2004 Beam Jive Consulting 21.9.2004
 22 / 23

An array of Node objects in this Node object. Can be used to loop through all child nodes. The
following code shows the basic way to loop through the nodes:

for(int i = 0; i < myXML.firstChild.length; i ++)
{
 Node currentNode = myXML.firstChild.childNodes[i];
 System.out.println(“Node: “ + currentNode.getName());
}

int length

Number of childNodes in the Node object.

© 2002 - 2004 Beam Jive Consulting 21.9.2004
 23 / 23

Version history 457

Version Date Author Description

1.0 12.1.2004 Kai Hannonen First version

1.1 21.9.2004 Kai Hannonen Fixed some typos and added the XML
and Node class descriptions.

 458

