sPRING

net

1.0.0 M1

Copyright © 2004-2008 Mark Pollack, Mark Fisher, Oleg Zhurakousky

Copies of this document may be made for your own use and for distribution to others,
provided that you do not charge any fee for such copies and further provided that
each copy contains this Copyright Notice, whether distributed in print or electronically.

I gL [F Tox o o I PP PPPPPPPPRRPN 1
T c = (= oo PP PPPPPPR 2
L E T o TS o 1 T AN 1 O 3
N 1Y @ N o= = o o] USSR 3

L1 0. IMIESSAOE ..eeevueunninniiiinintne et n i nnnres 3

1.0.2. EXCRBNGE .eoiiitiiie ettt ettt et 3

L.1.3. QUEUE «.ccvvviie ettt e e e e et e e e e e e e e e e et b eeeaeeeeea bbb e aaaaaeeee 4

0 0 S = o (] oo R 5

1.2. Connection and ReSOUrce ManagemMENLuueerererermrmemrmrereerenrnrnrrrnremnenmnmrrrmrenrrs 5

1.3, AMOPTEMPIBEE ...ttt e e e e e et e e s nn e e e s e nr e e e e e annneeeeaan 6

1.4, SENTING MESSATESeeeeeiuitieeeeiierte e et e e e ettt e e s ate et e e e st e e e e see e e e s asbe e e e e asbeeeeeannbeeeesanbneeeaane 6

1.5, RECEIVING MESSATESeeeeeiiirieeeaitreeeestteeeesastse e e e aste e e e e asbee e e e s sbs e e e e abbe e e e s anbe e e e e anbeeeesannneeas 7

1.5.1. SyNchronouS RECEPLIONceeeeiiiiiiiiiii et e e ee e 7

1.5.2. Asynchronous RECEPLIONocccuiiiiiiee e 7

AV === o Lo @0 1Y = = 8

1.6.1. SIMPIeMESSAgECONVEITESceeiiiiiiieiee et a e e e eneeeeeeeeaeas 9

1.6.2. JSONM ESSAGECONVEITEYeiiieieiieeees it e e e e e e e e e e s 9

1.7. Configuring the BrOKEr ..o 10

A g oo T 110 e = 1 oo RSP 12
P22 I 11 (T [N o 1 o o RO 12

2.2. Communicating With Erlang PrOCESSESuuuvurururrirrunuirrninmnrnrnrnrnmnenrrmrmnrnmmmn.. 12

2.2.1. EXECULING RPC ...ttt et e e s e e e es 12

2.2.2. ErlanNgCONVEITES ..ottt 12

3. SAMPIE APPIICELIONS ...ceeiiiiiie ettt e et e e e et e e et e e e e et n e e e e e nnnes 14
130 I 11 (o 11 o1 o o ORISR 14

B2 HEO WOITA .ottt e et e e e e nnbaeeeean 14

3.2.1. Synchronous EXaMPIEcooeeiiiiiiiiiieiee et 14

3.2.2. AsynchronouSs EXamMPIeccooeiiiiiiieiieeee et 15

3.3 SEOCK TTAOING ettt ettt e e e s e e e e e e e e anrnee e 17

[11. ONEI RESDUICESeviiiiieiiee e e s ittt e ee e e e s s ettt eeeteeessassteeaeeeaeeassasstbeeeeeeaeeassnsssaseeeeaeeessasssnnneneeensnnanns 18
4. FUMNEr REAOING ..ottt ettt e e ettt e e e e n bttt e e et e e e e et n e e e e nnbn e e e e ennees 19
(211 o] FToo = 0 1Y 2RSSR 20

Spring Framework (1.0.0 M1) ii

Preface

The Spring AM QP project applies core Spring conceptsto the devel opment of AM QP-based messaging solutions.
We provide a"template" asahigh-level abstraction for sending and receiving messages. We al so provide support
for Message-driven POJOs. These libraries facilitate management of AMQP resources while promoting the use
of dependency injection and declarative configuration. In al of these cases, you will see similarities to the IMS
support in the Spring Framework. The project consists of both Javaand .NET versions. This manual is dedicated
to the Javaversion. For linksto the .NET version'smanual or any other project-related information visit the Spring

AMQP project homepage.

Spring Framework (1.0.0 M1) i

http://springsource.org/spring-amqp

Part |. Introduction

Thisfirst part of the reference documentation is an overview of Spring AMQP and the underlying concepts.

Spring Framework (1.0.0 M1)

Part Il. Reference

This part of the reference documentation details the various components that comprise Spring AMQP. The main
chapter covers the core classes to develop an AMQP application. It part also includes a chapter on integration
with Erlang and a chapter about the sampl e applications.

Spring Framework (1.0.0 M1) 2

Chapter 1. Using Spring AMQP

In this chapter, we will explore interface and classesthat are the essential componentsfor devel oping applications
with Spring AMQP.

1.1. AMQP Abstractions

The Spring AMQP project consists of a few assemblies. The assembly Spri ng. Messagi ng. Amgp contains the
classes that represent the core AMQP "model”. Our intention is to provide generic abstractions that do not rely
on any particular AMQP broker implementation or client library. Asaresult, end user code will be more portable
across vendor implementations as it can be developed against the abstraction layer only. These abstractions
are then used implemented by broker-specific modules, such as 'Spri ng. Messagi ng. Amgp. Rabbi t '. For the M1
release RabbitM Q and A pache Qpid (2 versions) have been used to vet these base abstractions.

The overview here assumes that you are already familiar with the basics of the AMQP specification already. If
you are not, then have alook at the resources listed in Part 111, “ Other Resources’

1.1.1. Message

The 0-8 and 0-9-1 AMQP specifications do not define an Message class or interface. Instead, when performing
an operation such as' basicrublish ', the content is passed as a byte-array argument and additional properties
are passed in as separate arguments. Spring AMQP defines a Message class as part of a more general AMQP
domain model representation. The purpose of the Message classisto simply encapsulate the body and properties
within a single instance so that the rest of the API can in turn be ssimpler. The Message class definition is quite
straightforward.

public class Message

{

private readonly | MessageProperti es messageProperties;
private readonly byte[] body;

public Message(byte[] body, |MessageProperties messageProperties)

{
t hi s. body = body;
t hi s. nessageProperties = nessageProperti es;

}

public byte[] Body

{
get { return body; }

}

public | MessageProperti es MessageProperties

{

get { return messageProperties; }

}
}

The IMessageProperties interface defines several common properties such as 'messageld, 'timestamp’,
‘contentType', and several more. Those properties can a so be extended with user-defined 'headers' by calling the
Set Header (string key, object val) method.

1.1.2. Exchange

The |Exchange interface represents an AMQP Exchange, which is what a Message Producer sends to. Each
Exchange within avirtual host of a broker will have a unique name as well as afew other properties:

Spring Framework (1.0.0 M1) 3

Using Spring AMQP

public interface | Exchange

{
string Name { get; }
ExchangeType ExchangeType { get; }
bool Durable { get; }

bool AutoDelete { get; }

IDictionary Argunents { get; }

As you can see, an Exchange also has a 'type' represented by the enumeration ExchangeType. The basic types
are: bi rect, Topi ¢ and Fanout . In the core package you will find implementations of the | Exchange interface for
each of those types. The behavior varies across these Exchange types in terms of how they handle bindings to
Queues. A Direct exchange allows for a Queue to be bound by afixed routing key (often the Queue's name). A
Topic exchange supports bindings with routing patterns that may include the *' and '# wild cards for 'exactly-
one' and 'zero-or-more, respectively. The Fanout exchange publishes to al Queues that are bound to it without
taking any routing key into consideration. For much more information about Exchange types, check out Part |11,
“Other Resources’.

Note
“a
The AM QP specification also requiresthat any broker providea"default" Direct Exchangethat hasno
name. All Queuesthat are declared will be bound to that default Exchange with their namesasrouting
keys. You will learn more about the default Exchange's usage within Spring AMQP in Section 1.3,
“AmgpTemplate”.
1.1.3. Queue

The Queue class represents the component from which a M essage Consumer receives Messages. Like the various
Exchange classes, our implementation is intended to be an abstract representation of this core AMQP type.

public class Queue {
private readonly string nane;
private volatile bool durable;
private volatile bool exclusive;
private volatile bool autoDelete;
private volatile IDictionary argunents;
public Queue(string nane)

{

t hi s. name = nane;

}

/] Property setter and getters omitted for brevity

Notice that the constructor takes the Queue name. Depending on the implementation, the admin template may
provide methods for generating a uniquely named Queue. Such Queues can be useful as a "reply-to" address or
other temporary situations. For that reason, the 'exclusive' and 'autoDel ete' properties of an auto-generated Queue
would both be set to 'true’.

Spring Framework (1.0.0 M1) 4

Using Spring AMQP

1.1.4. Binding

Given that a producer sends to an Exchange and a consumer receives from a Queue, the bindings that connect
Queuesto Exchangesare critical for connecting those producers and consumers viamessaging. In Spring AMQP,
we define a Binding class to represent those connections. Let's review the basic options for binding Queues to
Exchanges.

Y ou can bind a Queue to a DirectExchange with afixed routing key.

new Bi ndi ng(soneQueue, soneDirect Exchange, "foo.bar")

Y ou can bind a Queue to a TopicExchange with arouting pattern.

new Bi ndi ng(someQueue, sonmeTopi cExchange, "foo.*")

Y ou can bind a Queue to a FanoutExchange with no routing key.

new Bi ndi ng(someQueue, soneFanout Exchange)

We also provide a BindingBuilder to facilitate a"fluent API" style.

Bi ndi ng b = Bi ndi ngBui | der. Fron(someQueue) . To(sonmeTopi cExchange) . Wt h("foo.*");

By itself, an instance of the Binding class is just holding the data about a connection. In other words, it is not an
"active' component. However, as you will see later in Section 1.7, “Configuring the broker”, Binding instances
can be used by the |AmgpAdmin interface to actually trigger the binding actions on the broker.

The interface |AmgpTemplate is aso defined within the Spring.Messaging.Amgp assembly. As one of the main
components involved in actual AMQP messaging, it is discussed in detail in its own section (see Section 1.3,
“AmgpTemplate’).

1.2. Connection and Resource Management

Whereas the AMQP model we described in the previous section is generic and applicable to all implementations,
when we get into the management of resources, the details are specific to the broker implementation. Therefore,
in this section, we will be focusing on code that exists only within the Spring.M essaging.Amgp.Rabbit assembly
since at this point, RabbitMQ is the only supported implementation.

The central component for managing a connection to the RabbitMQ broker is the |ConnectionFactory
interface. The responsibility of a |ConnectionFactory implementation is to provide an instance of
RabbitMQ.Client.Connection. The simplest implementation we provide is SingleConnectionFactory which
establishes a single connection that can be shared by the application. Sharing of the connection is possible
since the "unit of work" for messaging with AMQP is actually a "channel” (in some ways, thisis similar to the
rel ationship between a Connection and a Sessionin IMS). Asyou canimagine, the connection instance providesa
Cr eat eChannel method. When creating an instance of SingleConnectionFactory, the 'hostname' can be provided
viathe constructor. The 'username’ and 'password' properties should be provided as well.

Si ngl eConnecti onFactory connectionFactory = new Si ngl eConnecti onFactory("sonehost");
connect i onFactory. User Nane = "guest";
connectionFactory. Password = "guest";

I Connecti on connection = connectionFactory. Creat eConnection();

When using XML, the configuration might look like this:

‘ <obj ect id="ConnectionFactory" type="Spring. Messagi ng. Amgp. Rabbi t. Connecti on. Si ngl eConnecti onFactory, Spring. Messagi ng. Angp.

Spring Framework (1.0.0 M1) 5

Using Spring AMQP

<property nanme="Usernanme" val ue="guest"/>
<property nanme="Password" val ue="guest"/>
</ obj ect >

Note

H"-np. You may aso discover the CachingConnectionFactory implementation, but at this time, that code
is considered experimental . We recommend sticking with SingleConnectionFactory for now as the
caching implementation will most likely evolve. Support for fail over of connectionsis also planned.

1.3. AmgpTemplate

As with many other high-level abstractions provided by the Spring Framework and related projects, Spring
AMQP provides a "template” that plays a central role. The interface that defines the main operations is called
IAmgpTemplate. Those operations cover the general behavior for sending and receiving Messages. In other
words, they are not unique to any implementation, hence the "AMQP" in the name. On the other hand, there are
implementations of that interface that are tied to implementations of the AMQP protocol. Unlike IMS, which is
an interface-level API itself, AMQP isawire-level protocol. The implementations of that protocol provide their
own client libraries, so each implementation of the template interface will depend on a particular client library.
Currently, there is only one complete implementation: RabbitTemplate but the QpidTemplate has some of its
methods implemented in M 1. In the examples that follow, you will often see usage of an "I AngpTenpl at e”, but
when you look at the configuration examples, or any code excerpts where the template is instantiated and/or
setters are invoked, you will see the implementation type (e.g. "RabbitTemplate").

As mentioned above, the | AmgpTemplate interface defines all of the basic operations for sending and receiving
Messages. We will explore Message sending and reception, respectively, in the two sections that follow. The
| RabbitOperationsinterface contains additional send and execute methodsthat rely on specific RabbitMQ AMQP
channel classes.

1.4. Sending messages

When sending a Message, one can use any of the following methods:

voi d Send(MessageCr eat or Del egat e nessageCreator);
void Send(string routingkey, MessageCreatorDel egate nessageCreator);

void Send(string exchange, string routingKey, MessageCreatorDel egate nessageCreat or Del egat e) ;

We can begin our discussion with the last method listed above since it is actually the most explicit. It allows an
AMQP Exchange nameto be provided at runtime along with arouting key. The last parameter isthe callback that
is responsible for actual creating of the Message instance. An example of using this method to send a Message
might look this this:

tenpl at e. Send(" nar ket Dat a. t opi c", "quotes. nasdaq. FOO', channel => new Message(Encodi ng. UTF8. Get Byt es("12. 34"), sonePropertie

The "exchange" property can be set on the template itself if you plan to use that template instance to send to the
same exchange most or all of the time. In such cases, the second method listed above may be used instead. The
following example is functionally equivalent to the previous one:

anmgpTenpl at e. Exchange = "mar ket Data. topi c";
anmgpTenpl at e. Send(" quot es. nasdaq. FOO', channel => new Message(Encodi ng. UTF8. Get Byt es("12. 34"), sonmeProperties));

If both the "exchange"' and "routingKey" properties are set on the template, then the method accepting only the
MessageCreator may be used:

Spring Framework (1.0.0 M1) 6

Using Spring AMQP

anmgpTenpl at e. Exchange = "mar ket Data. topic";
anmgpTenpl at e. Routi ngKey ="quot es. nasdaq. FOO';
anmgpTenpl at e. Send(channel => new Message(Encodi ng. UTF8. Get Byt es("12. 34"), sonmeProperties));

A better way of thinking about the exchange and routing key properties is that the explicit method parameters
will aways override the template's default values. In fact, even if you do not explicitly set those properties on the
template, there are always default valuesin place. In both cases, the default isan empty String, but that is actually
asensible default. Asfar asthe routing key is concerned, it's not aways necessary in the first place (e.g. a Fanout
Exchange). Furthermore, a Queue may be bound to an Exchange with an empty String. Those are both legitimate
scenarios for reliance on the default empty String value for the routing key property of the template. Asfar asthe
Exchange name is concerned, the empty String is quite commonly used because the AM QP specification defines
the "default Exchange" as having no name. Since all Queues are automatically bound to that default Exchange
(which is a Direct Exchange) using their name as the binding value, that second method above can be used for
simple point-to-point Messaging to any Queue through the default Exchange. Simply provide the queue name as
the "routingKey" - either by providing the method parameter at runtime:

Rabbi t Tenpl ate tenpl ate = new Rabbit Tenpl at e(new Si ngl eConnectionFactory()); // using default no-name Exchange
tenpl at e. Send(" queue. hel | oWor | d", channel => new Message("Hello World".getBytes(), soneProperties));

Or, if you prefer to create a template that will be used for publishing primarily or exclusively to asingle Queue,
the following is perfectly reasonable:

Rabbi t Tenpl ate tenpl ate = new Rabbit Tenplate(); // using default no-nane Exchange
tenpl at e. Routi ngkey = "queue. hel | oWor |l d"; /1 but we'll always send to this Queue
tenpl at e. Send(channel => new Message(Encodi ng. UTF8. Get Byt es("Hel | o World"), soneProperties));

1.5. Receiving messages

M essage reception is always a bit more complicated than sending. The reason isthat there are two waysto receive
aMessage. The simpler option isto poll for asingle Message at atime with a synchronous, blocking method call.
The more complicated yet more common approach isto register alistener that will receive Messages on-demand,
asynchronously. We will look at an example of each approach in the next two sub-sections.

1.5.1. Synchronous Reception

The |AmgpTemplate itself can be used for synchronous Message reception. There are two 'receive’ methods
available. Aswith the Exchange on the sending side, there is a method that requires a queue property having been
set directly on the template itself, and there is a method that accepts a queue parameter at runtime.

Message Receive();

Message Recei ve(string queueNane);

1.5.2. Asynchronous Reception

For asynchronous Message reception, a dedicated component other than the AmgpTemplate is involved. That
component is a container for a Message consuming callback. We will look at the container and its propertiesin
just amoment, but first we should look at the callback since that iswhere your application code will beintegrated
with the messaging system. There are a few options for the callback. The simplest of these is to implement the
MessagelL istener interface:

public interface | Messageli stener

{

voi d OnMessage(Message nessage);

}

Spring Framework (1.0.0 M1) 7

Using Spring AMQP

If your callback logic depends upon the AMQP Channel instance for any reason, you may instead use the
| Channel AwareM essagel istener. It looks similar but with an extra parameter:

public interface |Channel AnareMessageli st ener

{
voi d OnMessage(Message nessage, | Mdel nodel);

}

If you prefer to maintain a stricter separation between your application logic and the messaging API, you can
rely upon an adapter implementation that is provided by the framework. This is often referred to as "Message-
driven POCQO" support. When using the adapter, you only need to provide a reference to the instance that the
adapter itself should invoke.

| MessagelLi stener |istener = new MessagelLi st ener Adapt er (sonePoj o) ;

Now that you've seen the various options for the Message-listening callback, we can turn our attention to
the container. Basically, the container handles the "active" responsibilities so that the listener callback can
remain passive. The container is an example of a "lifecycle" component. It provides methods for starting and
stopping. When configuring the container, you are essentially bridging the gap between an AM QP Queue and the
Messagel istener instance. Y ou must provide areference to the ConnectionFactory and the queue name or Queue
instance(s) from which that listener should consume Messages. Here is the most basic example using the default
implementation, SimpleM essagel istenerContainer :

Si npl eMessagelLi st ener Cont ai ner contai ner = new Si npl eMessageli st ener Cont ai ner () ;

cont ai ner. Connect i onFactory = rabbit Connecti onFact ory;

cont ai ner. Queue = "sone. queue”;
cont ai ner. MessagelLi st ener = soneli stener;

Asan "active" component, it's most common to create the listener container with a bean definition so that it can
simply run in the background. This can be donevia XML:

<obj ect nanme="MessagelLi st ener Cont ai ner" type="Spring. Messagi ng. Angp. Rabbi t. Li st ener. Si npl eMessageli st ener Cont ai ner, Spri ng.
<property nane="ConnectionFactory" ref="RabbitConnecti onFactory"/>
<property name="Queue" val ue="somne. queue"/>
<property nane="Messageli stener" ref="SoneLi stener"/>

</ obj ect >

1.6. Message Converters

The AmgpTemplate also defines several methods for sending and receiving Messages that will delegate to
a MessageConverter. The MessageConverter itself is quite straightforward. It provides a single method for
each direction: one for converting to a Message and another for converting from a Message. Notice that when
converting to a Message, you may also provide properties in addition to the object. The "object” parameter
typically corresponds to the Message body.

public interface | MessageConverter

{

Message ToMessage(obj ect obj, | MessagePropertiesFactory messagePropertiesFactory);

obj ect From\Vessage(Message nmessage);

Therelevant M essage-sending methodsonthe AmgpTemplate arelisted below. They are simpler thanthe methods
wediscussed previously because they do not require the MessageCreator callback. I nstead, the MessageConverter
is responsible for "creating" each Message by converting the provided object to the byte array for the Message
body and then adding any provided M essageProperties.

voi d Convert AndSend(obj ect nmessage);

Spring Framework (1.0.0 M1) 8

Using Spring AMQP

voi d Convert AndSend(string routingKey, object nessage);

voi d Convert AndSend(string exchange, string routingKey, object nessage);

voi d Convert AndSend(obj ect nessage, MessagePost Processor Del egat e nessagePost Processor Del egat e) ;

voi d Convert AndSend(string routingKey, object nessage, MessagePost ProcessorDel egat e nessagePost Processor Del egat e) ;

voi d Convert AndSend(string exchange, string routingKey, object nessage, MessagePost ProcessorDel egate nessagePost Proc

On the receiving side, there are only two methods: one that accepts the queue name and one that relies on the
template's "queue” property having been set.

obj ect Recei veAndConvert();

obj ect Recei veAndConvert (string queueNane);

1.6.1. SimpleMessageConverter

The default implementation of the | MessageConverter strategy is called SimpleMessageConverter. Thisis the
converter that will be used by an instance of RabbitTemplate if you do not explicitly configure an alternative. It
handles text-based content, and simple byte arrays.

1.6.1.1. Converting From a Message

If the content type of the input Message begins with "text" (e.g. "text/plain”), it will also check for the content-
encoding property to determine the charset to be used when converting the Message body byte array to a Java
String. If no content-encoding property had been set on the input Message, it will use the "UTF-8" charset by
default. If you need to override that default setting, you can configure an instance of SimpleMessageConverter,
set its "defaultCharset” property and then inject that into a RabbitTempl ate instance.

In the next two sections, we'll explore some aternatives for passing rich domain object content without relying
on .NET (byte[])seridization.

For all other content-types, the SimpleM essageConverter will return the Message body content directly as a byte
array.

1.6.1.2. Converting To a Message

When converting to a Message from an arbitrary .NET Object, the SimpleM essageConverter likewise deals with
byte arrays, Strings, and Serializable instances. It will convert each of these to bytes (in the case of byte arrays,
there is nothing to convert), and it will set the content-type property accordingly. If the Object to be converted
does not match one of those types, the Message body will be null.

1.6.2. JsonMessageConverter

One rather common approach to object serialization that is flexible and portable across different languages and
platforms is JSON (JavaScript Object Notation). An implementation is available and can be configured on any
RabbitTemplate instance to override its usage of the SimpleM essageConverter default.

<obj ect nanme="Rabbit Tenpl ate" type="Spring. Messagi ng. Angp. Rabbi t. Cor e. Rabbi t Tenpl ate, Spring. Messagi ng. Angp. Rabbit" >
<property nanme="ConnectionFactory" ref="ConnectionFactory"/>
<property name="MessageConverter">
<obj ect type="Spring. Messagi ng. Angp. Support. Converter. JsonMessageConverter, Spring. Messagi ng. Angp" >
<property nanme="TypeMapper" ref="CustoniTypeMapper"/>
</ obj ect >
</ property>
</ obj ect >

Spring Framework (1.0.0 M1) 9

Using Spring AMQP

1.7. Configuring the broker

The AMQP specification describes how the protocol can be used to configure Queues, Exchanges and
Bindings on the broker. These operations which are portable from the 0.8 specification and higher
are present in the AmgpAdmin interface in the org.springframework.amgp.core package. The RabbitMQ
implementation of that class is RabbitAdmin located in the org.springframework.amqp.rabbit.core package.
Any many configuration and management functions are broker specific and not included in the AMQP
specification, the interface RabbitBrokerOperations and its implementation RabbitBrokerAdmin located in the
org.springframework.amgp.rabbit.admin package is provided to fill that gap.

The AmgpAdmin interface is based on using the Spring AM QP domain abstractions and is shown below:

public interface | AmgpAdni n
{

voi d Decl ar eExchange(| Exchange exchange);

voi d Del et eExchange(string exchangeNane);

Queue Decl areQueue();

voi d Decl ar eQueue(Queue queue);

voi d Del et eQueue(string queueNane);

voi d Del et eQueue(string queueNane, bool unused, bool enpty);
voi d PurgeQueue(string queueNane, bool noWwit);

voi d Decl ar eBi ndi ng(Bi ndi ng bi ndi ng) ;

The DeclareQueue() method defined a queue on the broker whose name is automatically created. The additional
properties of this auto-generated queue are exclusive=true, autoDelete=true, and durable=false.

Note
e NS | | .
Removing a binding was not introduced until the 0.9 version of the AM QP spec.

The RabbitMQ implementation of this interface is RabbitAdmin which when configured using Spring XML
would look lik this:

<obj ect id="ConnectionFactory" type="Spring. Messagi ng. Angp. Rabbi t. Connecti on. Si ngl eConnecti onFactory, Spring. Messagi ng. Angp. |
<constructor-arg val ue="1ocal host"/ >
<property nanme="username" val ue="guest"/>
<property nanme="password" val ue="guest"/>

</ obj ect >

<obj ect name="AngpAdni n" type="Spring. Messagi ng. Angp. Rabbi t. Cor e. Rabbi t Admi n, Spring. Messagi ng. Angp. Rabbit">
<property nanme="Connecti onFactory" ref="ConnectionFactory"/>
</ obj ect >

Thereisalso amore extensive set of administration operations available that are specific to the RabbitM Q broker.
Thesse are in the interface |RabbitBrokerOperations and are implemented in the class RabbitBrokerAdmin. The
implementation uses an Erlang interopability library to make Erlang RPC calls to the server. The functionality
mimics what is available in rabbitmqgctl.bat.

public interface | RabbitBrokerQOperations : | AnmgpAdni n
{

Spring Framework (1.0.0 M1) 10

Using Spring AMQP

voi d RenpveBi ndi ng(Bi ndi ng bi ndi ng) ;

Rabbit Status Status { get; }

I Li st <Queuel nf o> Queues { get; }

/'l User nmanagenent

voi d AddUser (string usernane, string password);

voi d Del eteUser(string usernane);

voi d ChangeUser Password(string usernane, string newPassword);
I Li st<string> ListUsers();

voi d StartBrokerApplication();

voi d St opBroker Application();

[l <sumary>

/1] Starts the node. NOT YET | MPLEMENTED!

/11 </ summary>

void StartNode();

voi d St opNode();

voi d Reset Node();

voi d ForceReset Node() ;

/1 NOTE THE OPERATI ONS BELOW ARE NOT YET | MPLEMENTED I N ML

/'l VHost nanagenent

int AddVhost (string vhostPath);

int Del eteVhost(string vhostPath);

/] perm ssions

voi d Set Perm ssions(string usernane, Regex configure, Regex read, Regex wite);
voi d Set Perm ssions(string usernane, Regex configure, Regex read, Regex wite, string vhostPath);
voi d O ear Perm ssions(string usernang);

voi d O earPerm ssions(string usernane, string vhostPath);

Li st<string> ListPermn ssions();

Li st<string> ListPermn ssions(string vhostPath);

Li st<string> ListUserPerni ssions(string usernane);

Y ou instantiate an instance of RabbitBrokerAdmin by passing an Spring Rabbit | ConnectionFactory referenceto
its constructor. Please refer to the API docs for the contents of the RabbitStatus and Queuel nfo classes.

Spring Framework (1.0.0 M1) 11

Chapter 2. Erlang integration

2.1. Introduction

Thereisan open source project located on github called Erlang.NET. It providesto .NET what Jinterface provides
to Java users, namely a means to communicate with an Erlang process. The API is very low level and rather
tedious to use. The Spring Elang project makes accessing functions in Erlang from .NET easy, often they can
be one liners.

2.2. Communicating with Erlang processes
TODO

2.2.1. Executing RPC

The interface |ErlangOperationsis the high level API for interacting with an Erlang process.

public interface | ErlangOperations
{ T Execut e<T>(Connecti onCal | backDel egat e<T> acti on);
Q pEr | angCbj ect Execut eErl angRpc(string nodul e, string function, O pErlangList args);
Q pEr | angCbj ect Execut eErl angRpc(string nodul e, string function, parans O pErlangObject[] args);

Q pEr | angObj ect ExecuteRpc(string nodule, string function, paranms object[] args);

obj ect Execut eAndConvert Rpc(string nodule, string function, |ErlangConverter converterToUse,
paranms object[] args);

/'l Sweet!
obj ect Execut eAndConvertRpc(string modul e, string function, parans object[] args);

}

The class that implements this interface is called ErlangTemplate. There are a few convenience methods, most
notably ExecuteAndConvertRpc, as well as the Execute method which gives you access to the 'native’ API of
the Erlang.NET project. For simple functions, you can invoke ExecuteAndConvertRpc with the appropriate
Erlang module name, function, and arguments in a one-liner. For example, here is the implementation of the
RabbitBrokerAdmin method 'DeleteUser’

public void Del eteUser(string usernane)

{

erl angTenpl at e. Execut eAndConvert Rpc("rabbit_access_control ", "del ete_user", encodi ng. Get Byt es(usernane));

}
The 'encoding' field is simply and instance of ASCIIEncoding.

As the Erlang.NET library uses specific classes such as OtpErlangDouble, OtpErlangString to represent the
primitive types in Erlang RPC calls, there is a converter class that works in concert with ErlangTemplate that
knows how to trandate from .NET primitive types to their Erlang class equivalents. Y ou can also create custom
converters and register them with the ErlangTemplate to handle more complex data format trandations.

2.2.2. ErlangConverter

The |ErlangConverter interface is shown below

‘ public interface |ErlangConverter

Spring Framework (1.0.0 M1) 12

Erlang integration

{

/1] <summary>

/1l Convert a .NET object to a Erlang data type.

11l <l sunmary>

O pErl angOoj ect ToErl ang(obj ect obj ect ToConvert);

/1] <sunmary>

/1l Convert froman Erlang data type to a .NET data type.

1l <l sunmary>

obj ect FronErl ang(Q pErl angoj ect erl angoj ect) ;

/1] <summary>

/1l The return value fromexecuting the Erlang RPC.

11l <l sunmary>

obj ect FronErl angRpc(string nmodul e, string function, OpErlangject erlangject);
}

The provided implementation is SimpleErlangConverter which is used by default with ErlangTemplate and
handles all basic types.

Spring Framework (1.0.0 M1) 13

Chapter 3. Sample Applications

3.1. Introduction

The Spring AMQP project includes two sample applications. The first is a simple "Hello World" example that
demonstrates both synchronous and asynchronous message reception. It provides an excellent starting point for
acquiring an understanding of the essential components. The second sampleis based on asimplified stock-trading
use case to demonstrate the types of interaction that would be common in real world applications. In this chapter,
we will provide a quick walk-through of each sample so that you can focus on the most important components.
The samples are available in the distribution in the main solution file.

3.2. Hello World

The Hello World sample demonstrates both synchronous and asynchronous message reception.

3.2.1. Synchronous Example

Within the HelloWorld solution folder navigate to the Spring. Amgp.HelloWorld.BrokerConfiguration class. Run
the "Program.cs"' main application there in order to create a new queue declartion named "hel | o. wor | d. queue”
on the broker.

The HellowWorld/Sync solution folder has a project named Spring.Amgp.HellowWorldProducer. The Spring XML
configuration for creating the RabbitTemplate instance is shown below

<obj ects xm ns="http://ww. springframework. net">
<obj ect id="ConnectionFactory" type="Spring. Messagi ng. Angp. Rabbi t. Connecti on. Si ngl eConnecti onFactory, Spring. Messagi ng. Ang|
</ obj ect >

<obj ect id="RabbitTenplate" type="Spring. Messagi ng. Angp. Rabbi t. Core. Rabbi t Tenpl ate, Spring. Messagi ng. Angp. Rabbit">
<constructor-arg ref="ConnectionFactory"/>
<!-- The queue will be bound to the default direct exchange unless specified otherw se -->
<property nanme="Queue" val ue="hel |l 0. worl d. queue"/ >
<property nanme="Routi ngKey" val ue="hel | 0. worl d. queue"/ >
</ obj ect >

</ obj ect s>

Thisisidentical to the configuration of the Consumer application.

Looking back at the "rabbitTemplate" object definition configuration, you will see that it has the
helloWorldQueue's name set as its "queue” property (for receiving Messages) and for its "routingKey" property
(for sending Messages).

Now that we've explored the configuration, let'slook at the code that actually uses these components. First, open
the Program.cs file in the Producer project It contains a main() method where the Spring ApplicationContext is
created.

static void Main(string[] args)
{
using (1 ApplicationContext ctx = ContextRegistry.GetContext())
{
I AmgpTenpl ate angpTenpl ate = (1 AmgpTenpl ate) ctx. Get Obj ect (" Rabbi t Tenpl ate") ;
I og. I nfo("Sending hello world nessage.");
anmgpTenpl at e. Convert AndSend("Hel | o World");
log.Info("Hello world nmessage sent.");

Spring Framework (1.0.0 M1) 14

Sample Applications

}

Consol e. WiteLine("Press "enter' to exit.");
Consol e. ReadLi ne();

As you can see in the example above, an instance of the IAmgpTemplate interface is retrieved and used for
sending aMessage. Sincethe client code should rely on interfaceswhenever possible, thetypeis| AmgpTemplate
rather than RabbitTemplate. Even though thisis just a simple example, relying on the interface means that this
codeismore portable (the configuration can be changed independently of the code). Since the ConvertAndSend()
method is invoked, the template will be delegating to its IMessageConverter instance. In this case, it's using the
default SimpleM essageConverter, but adifferent implementation could be provided to the "rabbitTemplate" bean
as defined in HelloworldConfiguration.

Now open the Consumer project. It actually shares the same configuration as the producer project. The Consumer
codeis basically amirror image of the Producer, calling ReceiveAndConvert() rather than ConvertAndSend().

static void Main(string[] args)
{
using (1 ApplicationContext ctx = ContextRegistry. GetContext())
{
| AmgpTenpl at e angpTenpl ate = (1 AngpTenpl at e) ct x. Get Obj ect (" Rabbi t Tenpl ate") ;
I og. I nfo(" Synchronous pul l");
String message = (String) anmgpTenpl at e. Recei veAndConvert () ;
if (message == null)
{
log. I nfo("[No message present on queue to receive.]");
}
el se
{
log. I nfo("Received: " + message);
}
}

Consol e. WiteLine("Press 'enter' to exit.");
Consol e. ReadLi ne();

If you run the Producer, and then run the Consumer, you should see the message "Received: Hello World" in
the consol e output.

3.2.2. Asynchronous Example

Now that we've walked through the synchronous Hello World sample, it's time to move on to a dlightly more
advanced but significantly more powerful option. With afew modifications, the Hello World sample can provide
an example of asynchronous reception, ak.a. Message-driven POCOs. In fact, there is a progjct that provides
exactly that in Helloworld/Async solution folder.

Once again, we will start with the sending side. Open the ProducerConfiguration class and notice that it createsa
"connectionFactory” and "rabbitTemplate” object definition. Recall that messages are sent to an Exchange rather
than being sent directly to a Queue. The AMQP default Exchange is adirect Exchange with no name. All Queues
are bound to that default Exchange with their name as the routing key. That is why we only need to provide the
routing key here.

<obj ects xml ns="http://ww. springframework. net">
<obj ect id="ConnectionFactory" type="Spring. Messagi ng. Angp. Rabbi t. Connecti on. Si ngl eConnecti onFactory, Spring. Messagi ng. Anq|
</ obj ect >

<obj ect i d="Rabbit Tenpl ate" type="Spring. Messagi ng. Angp. Rabbi t. Cor e. Rabbi t Tenpl ate, Spri ng. Messagi ng. Angp. Rabbi t ">
<constructor-arg ref="ConnectionFactory"/>

Spring Framework (1.0.0 M1) 15

Sample Applications

<l-- The queue will be bound to the default direct exchange unless specified otherw se -->
<property nanme="RoutingKey" val ue="hel |l o.worl d. queue"/>
</ obj ect >

</ obj ect s>

Since this sample will be demonstrating asynchronous message reception, the producing side is designed to
continuously send messages (if it were amessage-per-execution model like the synchronous version, it would not
be quite so obvious that it isin fact a message-driven consumer).

cl ass Program
{
private static readonly |ILog | og = LogManager. Get Logger (typeof (Progran));
static void Main(string[] args)
{
using (1 ApplicationContext ctx = ContextRegistry. GetContext())
{
| AmgpTenpl at e angpTenpl ate = (1 AngpTenpl at e) ct x. Get Cbj ect (" Rabbi t Tenpl ate") ;
int i =0;
while (true)
{
anmgpTenpl at e. Convert AndSend("Hello World " + i++);
log.Info("Hello world nmessage sent.");
Thr ead. Sl eep(3000);
}
}
}
}

Now, let's turn to the receiving side. To emphasize the Message-driven POCO behavior will start with the
component that is reacting to the messages. The classis called HelloWworldHandler.

public class Hell oWrl dHandl er

{
public void Handl eMessage(string text)
{ Consol e. Wi teLine("Received: " + text);
}

}

Clearly, that is a POCO. It does not extend any base class, it doesn't implement any interfaces, and it
doesn't even contain any imports. It is being "adapted” to the MessageL istener interface by the Spring AMQP
Messagel istenerAdapter. That adapter can then be configured on a SimpleMessagel istenerContainer. For this
sample, the container is created in the Application.xml configuration file. Y ou can see the POCO declared there.

<obj ects xml ns="http://wmv. spri ngframework. net">

</ obj ect >

<obj ect id="Messageli stenerContai ner" type="Spring. Messagi ng. Angp. Rabbi t. Li st ener. Si npl eMessagelLi st ener Cont ai ner,
<property nane="ConnectionFactory" ref="Connecti onFactory"/>
<property nane="Queue" val ue="hel | o.worl d. queue"/>
<property name="Concurrent Consuners" val ue="5"/>
<property nane="MessageLi stener" ref="Messageli st ener Adapter"/>

</ obj ect >

<obj ect id="Messageli stenerAdapter” type="Spring. Messagi ng. Angp. Rabbi t. Li st ener. Adapt er. MessageLi st ener Adapt er,
<property nane="Handl er Obj ect" ref="Hel |l oWrl| dHandl er"/>
</ obj ect >

</ obj ect >

Spring Framework (1.0.0 M1) 16

<obj ect id="ConnectionFactory" type="Spring. Messagi ng. Amgp. Rabbi t. Connecti on. Si ngl eConnecti onFactory, Spring. Messagi ng. An

<obj ect id="HelloWrl dHandl er" type="Spring. Angp. Hel | oWr | d. Consumner . Async. Hel | oWor | dHandl er, Spring. Angp. Hel | owr | d. Consul

Sample Applications

‘ </ obj ect s>

You can start the Producer and Consumer in any order, and you should see messages being sent and received
every 3 seconds.

To run the application make sure that you select the properties of the top level solution and select "Multiple
Startup Project” option. Pick the producer and consumer applications”

3.3. Stock Trading

TODO

Spring Framework (1.0.0 M1) 17

Part lll. Other Resources

In addition to this reference documentation, there exist a number of other resourcesthat may help you learn about
AMQP.

Spring Framework (1.0.0 M1) 18

Chapter 4. Further Reading

For those who are not familiar with AMQP, the specification is actually quite readable. It is of course the
authoritative source of information, and the Spring AM QP code should be very easy to understand for anyonewho
is familiar with the spec. Our current implementation of the RabbitMQ support is based on their 1.8.x version,
and it officialy supports AMQP 0.8. However, we recommend reading the 0.9.1 document. The differences are
minor (mostly clarificationsin fact), and the document itself is more readable.

Thereare many great articles, presentations, and blogs available on the RabbitM Q Getting Started page. Since that
is currently the only supported implementation for Spring AMQP, we also recommend that as a general starting
point for all broker-related concerns.

Finally, be sure to visit the Spring AMQP Forum if you have questions or suggestions. With this first milestone
release, we are looking forward to alot of community feedback!

Spring Framework (1.0.0 M1) 19

http://www.amqp.org/confluence/display/AMQP/AMQP+Specification
http://www.rabbitmq.com/how.html
http://forum.springsource.org/forumdisplay.php?f=74

Bibliography

[jinterface-00] Ericsson AB. jinterface User Guide. Ericson AB . 2000.

Spring Framework (1.0.0 M1)

20

http://www.erlang.org/doc/apps/jinterface/jinterface.pdf

	Spring AMQP - Reference Documentation
	Table of Contents
	Preface
	Part I. Introduction
	Part II. Reference
	Chapter 1. Using Spring AMQP
	1.1. AMQP Abstractions
	1.1.1. Message
	1.1.2. Exchange
	1.1.3. Queue
	1.1.4. Binding

	1.2. Connection and Resource Management
	1.3. AmqpTemplate
	1.4. Sending messages
	1.5. Receiving messages
	1.5.1. Synchronous Reception
	1.5.2. Asynchronous Reception

	1.6. Message Converters
	1.6.1. SimpleMessageConverter
	1.6.1.1. Converting From a Message
	1.6.1.2. Converting To a Message

	1.6.2. JsonMessageConverter

	1.7. Configuring the broker

	Chapter 2. Erlang integration
	2.1. Introduction
	2.2. Communicating with Erlang processes
	2.2.1. Executing RPC
	2.2.2. ErlangConverter

	Chapter 3. Sample Applications
	3.1. Introduction
	3.2. Hello World
	3.2.1. Synchronous Example
	3.2.2. Asynchronous Example

	3.3. Stock Trading

	Part III. Other Resources
	Chapter 4. Further Reading
	Bibliography

